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Abstract

Locally interacting Markov chains (LIMC) describe the joint evolution of a large
collection of particles, in which the evolution of each particle depends only on its
neighbors with respect to a specified underlying interaction graph. We obtain a novel
characterization of the neighborhood dynamics (of a typical particle) for such mod-
els on deterministic heterogeneous graphs that are comprised of sparsely-connected
dense structures. Furthermore, we investigate LIMC models for opinion dynam-
ics on deterministic and random graphs, such as Erdős-Rényi random graphs and
Galton-Watson trees, through simulations. We study and compare the efficacy of
classical mean field approximations and more recently established local equation
approximations, for the dynamics of the neighborhood of a typical vertex on such
graphs. Our work presents further questions about understanding the marginal
dynamics of LIMC on heterogeneous graph structures and the analytic and compu-
tational implications of these characterizations.

Acknowledgements. Thank you to Professor Kavita Ramanan for her guidance, sup-
port, and mentorship of my research and learning throughout my years at Brown and the
completion of this thesis. Thank you to Yin-Ting Liao for his guidance and interesting
discussions. Thank you to Giorgio Cocomello for giving feedback on the exposition of an
earlier draft.
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1 Introduction

1.1 Background and Motivation

Stochastic models are useful for representing many physical, biological, social, and tech-
nological systems. In particular, interacting particle systems (IPS) are a class of high-
dimensional stochastic processes, which model a large number of random particles whose
local interaction is governed by an underlying graph structure. First studied in the 1960s
by F. Spitzer in the United States and R. L. Dobrushin in the Soviet Union, the theory
of IPS gave rise to many new questions. While the entire collection of particles in an IPS
evolves as a high-dimensional Markov chain, the marginal dynamics in a small neighbor-
hood of a typical vertex are described by a non-Markovian process. Thus, the analysis of
such marginal dynamics of IPS requires different techniques than the existing theory of
IPS.

The study of IPS was initiated in the context of statistical mechanics, where, for ex-
ample, the stochastic Ising model represents the evolution of magnetic spins in a medium
over time. In subsequent decades, IPS have been well-studied in other areas of application
as well. The voter model represents the evolution of opinions in a population over time,
where each particle represents a person’s opinion of a particular party or viewpoint over
time. The contact process models disease propagation, in which particles represent indi-
viduals or computers that may be healthy or infected at a particular time. These three
models give only a sampling of the variety of applications for IPS, and in more recent
years, further applications, including from neuroscience and technological systems have
been explored. In all cases, IPS are effective representations for large systems that evolve
randomly and have some local structure, such as physical proximity in the case of atoms
in a piece of iron, or social connections in the case of the voter model. [1]

1.2 Main Contributions

In this thesis, we will consider sequences of discrete-time interacting particle systems, also
called locally interacting Markov chains (LIMC) or stochastic cellular automata, whose
interactions are governed by both homogeneous and heterogeneous deterministic graphs as
well as random graphs. A question of interest for such a system is the marginal dynamics
of a single particle, or finite number of particles, over a finite time as the total number of
particles, n, goes to infinity. The main aim is to characterize the limit of the system (with
respect to a suitable topology) as n→∞ and to understand the marginal dynamics at a
neighborhood of a typical particle of this limit system.

From an analytic perspective, there are many properties of random systems charac-
terized by the neighborhood dynamics that are compelling to study. The non-Markovian
nature of local dynamics for sparse systems require new tools for their analysis, compared
to existing characterizations for dense systems. Computationally, the neighborhood dy-
namics of the limit system provide an approximation for the behavior of the neighborhood
of a corresponding particle in a large finite system. Finding such approximations that do
not scale with n is useful for simulations, since in principle the distribution of a single

4



particle could, in general, depend on every node in the system.
Sequences of IPS are well-characterized for densely connected interaction graph se-

quences and recent work by Lacker, Ramanan, and Wu provides new results for the limits
and neighborhood dynamics for sequences of sparsely interacting systems. [2],[3] This
report addresses the novel setting of interaction graphs that are neither dense nor sparse,
but may have heterogeneous connectivity properties. In Section 4, we introduce an in-
teraction graph structure that combines dense and sparse motifs and apply and extend
existing techniques for analysis of discrete IPS to this new setting to characterize the limit
and neighborhood dynamics of the heterogeneous system.

This resport is structured as follows. In Section 2, we state the definition of a LIMC
and precisely define the interaction graph sequences considered. In Section 3, we give an
overview of existing characterizations of random dynamics for dense and sparse graph se-
quences. In Section 4, we introduce the heterogeneous ring cluster model and characterize
its limit and marginal dynamics. In Section 5, we provide the results of simulations of
LIMC modeling opinion dynamics. Finally, in Section 6, we formulate further questions
of interest and discuss the results in this report.
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2 Locally Interacting Markov Chains

2.1 Notation

Given a graph G = (V,E), for any vertex v ∈ V , let ∂v denote its neighborhood and set
∂v := {v} ∪ ∂v. The degree of a vertex in a graph is equal to |∂v|, the cardinality of its
neighborhood, and a graph is said to be locally finite if the degree of each vertex is finite.
Unless otherwise noted, we always considers graphs G = (V,E) to be undirected, simple
(no self-loops or multiedges), and locally finite graph with finite or countably infinite
vertex set V . Often, we will consider a sequence of graphs {Gn}n∈N, with Gn = (Vn, En)
and |Vn| → ∞ as n→∞.

Definition 2.1 (space of symmetric terminating sequences). For a metric space (S, || · ||)
and any k ∈ N0, let Sk(S) denote the space of unordered S-valued sequences of length k,
with the convention that S0(S) = {0}. Then

St(S) :=
∞⊔
k=0

Sk(S)

denotes the space of symmetric terminating sequences. [2]

For a discrete set S, let P(S) denote the set of all probability distributions on S. For
probability measures {µn}n∈N and µ on S, we say that µn converges to µ weakly and write
µn ⇒ µ if for every bounded function f : S → S,

lim
n→∞

Eµn [f ] = Eµ[f ].

Moreover, for S-valued random variables {Xn}n∈N and X, we say Xn converges to X
in law and write Xn ⇒ X if for the distributions {µn}n∈N and µ, of {Xn}n∈N and X,
respectively, µn ⇒ µ.

2.2 Main Definitions

The fundamental mathematical object that we will consider is the discrete interacting
particle system, also known as a locally interacting Markov chain (LIMC) or stochastic
cellular automaton, which is a high-dimensional Markov chain that evolves locally with
respect to a certain underlying interaction graph.

Definition 2.2 (LIMC). Given a graph G = (V,E), discrete state space S, {ξv(t)}v∈V,t∈N
independent, identically-distributed (i.i.d.) noise taking values in [0, 1], a family of maps
F 0
v,λ : [0, 1] → S, λ ∈ R, v ∈ V , that govern the initial conditions, and measurable

transition function F : S×St(S)×[0, 1]→ S, the evolution dynamics of the corresponding
LIMC (G,X), where X = {Xv(t)}v∈V,t∈N, is given by

Xv(0) = F 0
v,λ(ξv(0)),

Xv(t+ 1) = F (Xv(t), X∂v(t), ξv(t+ 1)), for t ≥ 0

for every v ∈ V , where for any set A ⊂ V , we use XA(t) to denote the collection of random
variables {Xv(t)}v∈A.
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2.3 Graph Structures

For examples and for simulations, we will consider a variety of deterministic and random
graph structures. Recall that we take {Gn}n∈N to denote a sequence of graphs with
|Vn| → ∞ as n→∞.

Definition 2.3. We say that a (deterministic) graph sequence {Gn} is dense if infv∈Vn |∂v|
is unbounded as n→∞.

Definition 2.4. We say that a (deterministic) graph sequence {Gn} is sparse if supv∈Vn |∂v|
is uniformly bounded for all n.

For the random graph sequences we consider, we use the following the characterizations
of sparse and dense sequences.

Definition 2.5. We say that a random graph sequence {Gn} is dense if

inf
n∈N

EGn,ρ[|∂ρ|] =∞,

where the expectation is taken over all possible graph structures and vertices ρ chosen
uniformly at random. In other words, the graph sequence is dense if the average typical
degree of a node within the graph is unbounded with n.

Definition 2.6. We say that a random graph sequence {Gn} is sparse if

sup
n∈N

EGn,ρ[|∂ρ|] <∞,

where the expectation is taken over all possible graph structures and vertices ρ chosen
uniformly at random. In other words, the graph sequence is sparse if the average typical
degree of a node within the graph is uniformly bounded with n.

The simplest deterministic examples of dense and sparse sequences are the complete
and cycle (or ring) graphs on n vertices, respectively.

Definition 2.7 (complete graph). The sequence of complete graphs on n vertices, {Gn}n∈N,
also frequently denoted as {Kn}, is the sequence of graphs on vertex sets Vn := {1, . . . , n}
with edge sets En := Vn × Vn (all possible pairs of vertices).

Definition 2.8 (cycle graph). The sequence of cycle graphs on n vertices, {Gn}n∈N, is
the sequence of graphs on vertex set Vn := {1, . . . , n} with edge set:

En = {(u, v) : u, v ∈ Vn, |u− v| mod n ≤ 1}.

Given a graphG = (V,E), a cycle is a subset of the edges {(v, v1), (v1, v2), . . . , (vm, v)} ⊂
E for some m ∈ N that forms a path where some vertex v is both the first and the last
vertex in the path and v, v1, . . . , vm are distinct. A tree is defined to be an acyclic graph,
i.e. a graph which has no cycles. An important class of sparse graph sequences is that of
finite d-regular trees.
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Definition 2.9. For any d,N ∈ N, we call a finite d-regular tree of N levels a tree where
the root has d children and each offspring subsequently has d children for N − 1 further
generations.

We will also consider random graphs of two types: Erdős-Rényi random graphs and
Galton-Watson trees.

Definition 2.10 (Erdős-Rényi random graph). Given a (0, 1)-valued sequence {pn}, we
define a sequence of Erdős-Rényi random graphs {G(n, pn)}n∈N as follows. Let {ηij}ni≥j=1

be i.i.d. Bernoulli(pn). Then for any i, j ∈ Vn, i ∈ ∂j if ηij = 1.

Definition 2.11 (truncated Galton-Watson tree). Given a probability distribution ρ :
N0 → [0, 1], N ∈ N, GW (ρ,N) denotes a random tree with a special vertex ∅, called
the root, and each vertex v at a distance i with i < N from the root has offspring (or
neighbors at a distance i+ 1 from the root) drawn independently from ρ and the vertices
at distance N have no offspring. Such a tree will be called an N -truncated Galton-Watson
(GW) tree.

Definition 2.12 (truncated unimodular Galton-Watson tree). Given a probability dis-
tribution ρ : N0 → [0, 1], N ∈ N, let UGW (ρ,N) denote a random tree with diameter N
with root offspring distribution ρ and subsequent offspring having distribution ρ̂, with

ρ̂(k) =
(k + 1)ρ(k + 1)∑

n∈N nρ(n)

for k ∈ N0. Such a tree will be called an N -truncated unimodular Galton-Watson (UGW)
tree.

Remark. It is easy to check that ρ = ρ̂ for a UGW if and only if ρ is a Poisson distribution.

When studying the properties of random dynamics on random graph sequences, there
are two sources of randomness and it is important to distinguish between quenched and an-
nealed models. These terms originate in the statistical physics literature. In the quenched
case, one studies the randomness of the dynamics, conditioned on the structure of the
graph, while in the annealed setting, one averages over the randomness of both the graph
structure and the dynamics. In this report, we will restrict ourselves to considering the
quenched case.
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Figure 1: Diagram showing representative examples or realizations from dense and sparse
graph sequences, respectively.

3 Survey of Prior Work

The main objectives of this thesis are to characterize the limits of sequences of LIMC as
the size of the system grows to infinity and to provide an autonomous characterization of
the marginal dynamics of a single or finite collection of particles of the limiting system.
In this section, we give an overview of existing results for deterministic dense and sparse
graphs sequences.

3.1 Mean Field Limits of Dense LIMC Sequences

The limits of dense LIMC are well described by mean field theory. The study of mean
field interactions was introduced by McKean and Vlasov in 1966 to describe physical
models of plasma, in which each particle interacts weakly with a large number of other
particles [4]. Such systems can be represented by stochastic processes continuous in time
and space, and are thus governed by a system of stochastic differential equations (known
as the McKean-Vlasov). In the literature since then, such a mean field analysis has been
carried out for a variety of other models, including LIMC, where the dynamics are discrete
in time and space [5].

The key idea of the mean field limit is the concept of asymptotic independence: intu-
itively, the infinitesimal dynamics of each particle in a large system depend symmetrically
on its neighbors, so the influence of each neighbor on the particle is inversely proportional
to the degree of that vertex. Therefore, for dynamics on dense sequences of graphs, the
dependence vanishes in the limits, the particles become asymptotically independent, the
global empirical measure converges to a deterministic limit, and the trajectory of a single
particle is described by a so-called nonlinear Markov process.
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More precisely, we will state the result in [5] for the mean field limit of a discrete
interacting particle systems on complete interaction graphs. In the model considered
in [5], the transition function is assumed to depend symmetrically on the neighboring
particles and transitions are allowed to depend on a finite memory.

Let S = {1, . . . , S} for some S ∈ N and let Xn = {Xn
j (t)}j∈{1,...,n},t∈N0 represent

the states of n interacting particles with each Xn
j (t) an S-valued random variable with

dynamics given as follows. Define the empirical measure µn(t) ∈ P(S) as follows

µni (t) =
1

n

n∑
j=1

1{Xn
j (t)=i}, i ∈ S

For each t ∈ N0, let Rn(t) be an Rd-valued random variable representing the memory of
the process. Let g : Rd × P(S)× Rd be the memory update function:

Rn(t+ 1) = g(Rn(t), µn(t+ 1)).

At t = 0, let Xn(0) and Rn(0) be distributed according to some probability distribu-
tions on Sn and Rd×n, respectively. Then let F : S × Rd × [0, 1] → S be the transition
function such that for all j ∈ {1, . . . , n}, t ∈ N0,

Xn
j (t+ 1) = F (Xn

j (t), Rn(t), ξj(t+ 1))

where {ξv(t)}v∈V,t∈N0 are i.i.d. random noises taking values in [0, 1] with common distri-
bution ν and F is measurable. Notice that if g(Rn(t), µn(t + 1)) = g(µn(t + 1)), that
is, the memory update does not depend on the past memory of the particle, then this
particle system is a special case of the definition of an LIMC (Definition 2.2) on a com-
plete graphs sequence, with a dependence on the neighboring particles only through the
empirical distribution.

For a, b ∈ S, define the transition probability Ka,b : Rd → [0, 1] from a to b by

Ka,b(r) = P
(
Xn
j (t+ 1) = b | Rn(t) = r,Xn

j (t) = a
)
, r ∈ Rd,

where r 7→ Ka,b is continuous.

Theorem 3.1 (Theorem 4.1 of [5]). If there exist µ(0) ∈ P(S), R(0) ∈ Rd such that
almost surely µn(0) ⇒ µ(0) and Rn → ρ(0) as n → ∞, then for every t ∈ N0 almost
surely

µn(t)⇒ µ(t) and Rn(t)→ R(t) as n→∞.
where µ,R are defined by the evolution

µ(t+ 1) = µ(t) ·K(R(t)), R(t+ 1) = g(R(t), µ(t+ 1)).
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As a consequence, we can characterize the autonomous limit of a single particle as
follows. Let {Xn}n∈N be defined as above. Suppose there exist µ(0) ∈ P(S), R(0) ∈
Rd such that almost surely µn(0) ⇒ µ(0) and Rn → ρ(0) as n → ∞. For v chosen
uniformly at random from {1, . . . , n}, if we define recursively the S-valued stochastic
process {X(t)}t∈N0 by X(0) = Xn

v (0) and for all t ≥ 0,

X(t+ 1) = F (X(t), R(t), ξ(t+ 1))

where {ξ(t)}t∈N0 are i.i.d. random noises taking values in [0, 1] with common distribution
ν and

R(t) =

{
g(R(0), µ(0)) if t = 0,

g(R(t− 1),Law(X(t))) if t > 0.

Then by the continuity of r 7→ Ka,b, we conclude that then Xn
v (t)⇒ X(t) for each t ∈ N0.

3.2 Limits of Sparse LIMC Sequences

In comparison to the dense case, an understanding of the limits of sparse LIMC sequences
has developed only very recently. Specifically the work of Ramanan, Lacker, and Wu, [3],
identifies the limits of large sparse systems as well as autonomously characterize the law
of the evolution of a typical particle and its neighbors in the limit, in terms of a certain
non-Markovian process [3], [6].

The limits of sparse systems are established in the sense of local convergence. First,
we introduce some necessary notation. For a graph G = (V,E) and A ⊂ V , let GA denote
the subgraph of G induced by the set A. For a “root vertex” ρ ∈ V , let Br(ρ) ⊂ V be
the set of all vertices accessible by paths of length at most r from the vertex ρ within
the graph G. Finally, we say that two graphs Gi = (Vi, Ei) for i = 1, 2 with roots ρ1, ρ2,
respectively, are isomorphic if there exists a bijection ϕ : V1 → V2 such that ϕ(ρ1) = ρ2
and (ϕ(u), ϕ(v)) ∈ E2 if and only if (u, v) ∈ E1.

Definition 3.2 (local graph convergence). We say that a sequence of connected rooted
graphs {Gn, ρn} converges to a graph (G, ρ) locally if for every radius r ∈ N there exists
an N = N(r) such that for all m ≥ N , Gn

Br(ρn)
is isomorphic to GBr(ρ).

Remark. Since by our convention the limiting graph G is also locally finite, local graph
convergence makes sense only for sparse graph sequences.

Example 3.3. A sequence of cycle graphs converges locally to the infinite one-dimensional
lattice. (See Figure 2.) For fixed d ∈ N, a sequence of d-regular trees of increasing levels
converges locally to an infinite d-regular tree.

We would like to characterize limits of sparse LIMC which converge locally both in
graph structure and in random dynamics, motivating the following definitions. Given a
finite state space S, let a marked rooted graph (G, ρ, x) be a graph G = (V,E) with root ρ
and a state xv ∈ SV . We think of (G, ρ, x) as representing the inital conditions of a LIMC
(G,X). Then we say two marked graphs (Gi, xi) for i = 1, 2 with roots ρ1, ρ2, respectively,
are isomorphic if there is an isomorphism ϕ from G1 to G2 and (x1)v = (x2)ϕ(v) for each
v ∈ V1.
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Figure 2: For any root node in a sequence of cycle graphs, as long as one chooses a large
enough cycle, a ball of finite radius around the root is isomorphic to the corresponding
ball on a one-dimensional infinite lattice.

Definition 3.4 (local convergence of marked graphs). A sequence of marked rooted con-
nected graphs (Gn, ρn, xn) converges locally to (G, ρ, x) for every radius r ∈ N, and ε > 0,
there exists an N = N(ρ, r, ε) such that for all m ≥ N , there exists an isomorphism
ϕ : Gm

Br(ρ)
→ GBr(ρ) and

sup
v∈Gm

Br(ρ)

|v − ϕ(v)| < ε.

In fact, the space G∗[S] of such marked graphs has an associated metric which is
compatible with this sense of convergence. Thus, for a sequence of graphs with random
marks, one can say that (Gn, Xn)⇒ (G,X) in the sense of local convergence.

We mention two of the key results of Lacker, Ramanan, and Wu in [6] and [2]. Let
(Gn, Xn) be a sequence of LIMC with sparse interaction graph sequence {Gn}. Let G
be the local limit of {Gn}, and X random dynamics on G given by the same transition
dynamics as Xn.

Theorem 3.5 (corresponding to Theorem 3.2 of [6] and Theorem 2.13 of [2]). If F is
continuous, (Gn, Xn(0)) ⇒ (G,X(0)), and Gn is a UGW (ρ, n) tree, then (Gn, Xn) ⇒
(G,X). Moreover, the trajectory of the root particle Xn

ρn converges in law in S∞ to the
root particle Xρ of the limiting system.

A key intermediate result that is used in the proof of Theorem 3.5 for deterministic
graphs is a certaing conditional independence property or Markov random field property,
which we preface with a definition.

Definition 3.6. For any stochastic process Y = {Y (t)}t∈N, we denote the history, or
trajectory, of Y through time t by Y [t] where Y [t] = {Y (s)}ts=0.

Furthermore, for a graph G = (V,E) and A ⊂ V , the boundary of A is given by

∂A := {u ∈ V \ A : (u, v) ∈ E for some v ∈ A}

12



and the double boundary of A by

∂2A := ∂A ∪ ∂(A ∪ ∂A).

Theorem 3.7 (Theorem 3.2 of [2]). Let {Xv(0)}v∈V be i.i.d. with common distribution
ν. Then for each t ∈ N and for any A ⊂ V , XA[t] ⊥ XV \(A∪∂2A)[t] | X∂2A[t]. In other
words, the trajectories of X form a second-order Markov random field.

The proof of Theorem 3.5 for random graphs uses a more involved conditional inde-
pendence result, which also involves the randomness of the structure of the tree. We refer
the interested reader to [2].
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4 Heterogeneous Graph Structures

In section 3, we mentioned existing results for scaling limits and local characterizations
of dynamics on dense structures and sparse structures. A novel setting for investigating
these limiting properties is on heterogeneous structures which are neither dense nor sparse.
Such structures arise in many systems of interest, from social networks to neuroscience
[7], [8].

4.1 Ring Cluster System

To begin an investigation of heterogeneous structures, we introduce a graph structure
which combines two motifs, the cycle and the complete graph. We define the ring cluster
graph sequence, a sequence of growing rings decorated by densely connected clusters,
which simultaneously grow in size, and study random dynamics on this graph sequence.

4.1.1 Definitions

Let α ∈ N denote the fixed period of the occurrence of clusters on the cycle and let
k : N → N be a function representing the size of a cluster such that k(N) → ∞ as
N → ∞, where N ∈ N denotes the number of clusters. Notice that α does not depend
on N .

Definition 4.1. We define the ring cluster graph structure GN = G(α,N, k), as the graph
on the vertex set, VN , with vertices

VN = RN ∪
(
N−1⋃
i=0

Ci
N

)
.

where RN := {0, 1, 2, . . . , αN − 1} ⊂ V represents the set of vertices on the ring and for
i = 0, . . . N − 1,

Ci
N = {iα} ∪ {(iα, n) : n = 1, . . . , k(N)− 1}

denotes the set of vertices in the ith cluster.
The (undirected) edge set EN is given by the following: we say that (u, v) ∈ EN , or

u ∼ v, for some u, v ∈ VN if one of the following conditions is met:

(i) u, v ∈ RN and |u− v| ≡ 1 mod αN .

(ii) u, v ∈ Ci
N for some i.

See Figure 3 for a diagram of the graph structure.

Definition 4.2 (Ring cluster dynamics). For a ring cluster graph GN = G(α,N, k) as
defined above, let XN = {XN

v (t)}v∈V be the discrete-time stochastic process representing
the state of the dynamics on GN , which we refer to as the ring cluster system. Each
XN
v (t) takes values on a finite state space S := {1, . . . , S} for some S ∈ N.
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(1)

(2)

(3)

Figure 3: Diagram showing the ring cluster graph structure for N = 5, α = 4, and
k(5) = 10, with color-coding to mark (1) interior cluster, (2) cluster-ring interface, and
(3) ring nodes.

Let λv ∈ P(S) denote the distribution of XN
v (0) for each v ∈ V . We now specify

the state transitions, which have a different form for vertices in each of the following
subsets: (1) interior cluster, (2) cluster-ring interface, and (3) ring. Given measurable
transition functions F1 : S × P(S) × [0, 1] → S, F2 : S × S3 × P(S) × [0, 1] → S, and
F3 : S × S3 × [0, 1] → S, we define the process XN by the following recursive relations,
for i ∈ {0, . . . , N − 1},

XN
iα,n(t+ 1) = F1(X

N
iα,n(t), µ(N,i)(t), ξiα,n(t+ 1)) for n ∈ {1, . . . , k(N)− 1},

XN
i (t+ 1) = F2(X

N
i (t), XN

∂Ri
(t), µ(N,i)(t), ξi(t+ 1)) if i ≡ 0 mod α,

XN
i (t+ 1) = F3(X

N
i (t), XN

∂Ri
(t), ξi(t+ 1)) if i 6≡ 0 mod α,

where ∂Ri := ∂i ∩RN is the neighborhood of i within RN , and

µ(N,i)(t) =
1

k(N)

k(N)−1∑
j=0

δXN
iα,j(t)

,

with the indexing convention that XN
iα,0 = XN

iα. In general, we take {ξv(t)}v∈V,t∈N to
be i.i.d. with common distribution ξ, and assume without loss of generality that ξ ∼
Unif([0, 1]).
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XN
αN−2 XN

αN−1 XN
0 XN

1 XN
2

XN
0,1

XN
0,2XN

0,3

XN
0,4

Figure 4: Schematic representation of a part of the ring cluster system for k(N) = 5
showing the indexing convention.

See Figure 3 for a diagram of the ring cluster graph structure and Figure 4 for a
schematic showing the indexing convention.

4.1.2 Convergence Results

The convergence proof follows two main steps: first we use a mean-field approach to show
the convergence of the empirical measure of each cluster to a deterministic limit, and to
give an autonomous characterization of the evolution of a single particle in the interior
of a cluster. Second, we identify the limiting (heterogeneous) dynamics of the particles
lying on the ring and give an autonomous characterization of the evolution of the law
of a finite subset particles in the limit, representative of the typical particles on the ring
within the heterogeneous system, in terms of a certain non-Markovian process. Together,
the arguments in these two steps completely characterize the limit dynamics of all types
of particles in the ring cluster system and the evolution of the marginal dynamics for
typical particles of each type.

Step 1. First under suitable conditions on the initial conditions, we show convergence
of the empirical measure of each cluster. Specifically, for each i = 0, 1, . . . , N − 1, we will
show that almost surely for every t ∈ N0, there exists a (deterministic) µ(t) ∈ P(S) such
that

µ(N,i)(t)⇒ µ(t).

Argument for Step 1. For any j ∈ S and µ ∈ P(S), denote as P 1
j, · (µ) the transition

probability distribution on S given by

P 1
j, · (µ) := Law(F1(j, µ, ξ)), (4.1)

or in other words, for any i ∈ {0, 1, . . . , N − 1}, n ∈ {1, . . . , k(N)− 1} and k ∈ S,

P 1
j,k(µ) = P(F1(j, µ, ξ) = k)P(XN

i,n(t+ 1) = k | XN
i,n(t) = j, µ(N,i)(t) = µ).

Similarly, for j, k, l ∈ S, define

P 2
j,k,l, · (µ) := Law(F2(j, {k, j, l}, µ, ξ)).
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Assumption 4.3. For each j, k, l ∈ S, µ 7→ P 1
j, · (µ) and µ 7→ P 2

j,k,l, · (µ) are continuous in
µ, where µ ∈ P(S).

If almost surely µ(N,i)(0)⇒ µ(0) as N →∞ for some deterministic limit µ(0) ∈ P(S),
define for all t > 0 the candidate limit empirical measure process µ(t) = {µk(t)}k∈S ∈
P(S) as follows:

µk(t+ 1) =
∑
j∈S

µj(t)P
1
j,k(µ(t)). (4.2)

To establish the desired convergence, we will use a coupling argument. We first con-
struct the process X̃N = {X̃N

v (t)}v∈V,t∈N that is driven by the same noise processes and
with the same interaction graphs as XN , with similar dynamics, but for which it will
be easier to show convergence of the empirical measure. For t = 0 and all v ∈ V , set
X̃N
v (0) := XN

v (0), and for all t > 0,

X̃N
iα,n(t+ 1) = F1(X̃

N
iα,n(t), µ(t), ξiα,n(t+ 1)) for i ∈ {0, . . . , N − 1}, n ∈ {1, . . . , N − 1},

X̃N
i (t+ 1) = F2(X̃

N
i (t), X̃N

∂Ri
(t), µ(t), ξi(t+ 1)) for i ∈ {αj : j = 0, 1, 2, . . . , N − 1},

X̃N
i (t+ 1) = F3(X̃

N
i (t), X̃N

∂Ri
(t), ξi(t+ 1)) for i ∈ RN \ {αj : j = 0, 1, 2, . . . , N − 1},

where recall that RN = {0, 1, 2, . . . , αN − 1} the {ξi(t)}i∈VN ,t∈N0 are the same noises as in
the definition of the original process X. Let µ̃(N,i) be the empirical measure of the process
X̃N , that is,

µ̃(N,i)(t) :=
1

k(N)

k(N)−1∑
j=0

δX̃N
iα,j(t)

.

Then by Lemma 8.1 in [5], we have that for any i, if almost surely µ(N,i)(0)⇒ µ(0) as
N →∞ for some deterministic limit µ(0), then for any t ≥ 0, almost surely,

µ̃(N,i)(t)⇒ µ(t) as N →∞.

Lemma 4.4. (modification of Lemma 8.3 in [5]) Suppose µ(N,i)(0) ⇒ µ(0) as N → ∞
for some deterministic limit µ(0) and that Assumption 4.3 holds. Then almost surely

lim
N→∞

1

k(N)

k(N)−1∑
j=0

1{XN
i,j(t) 6=X̃N

i,j(t)}
= 0, (4.3)

and almost surely
µ(N,i)(t)⇒ µ(t) as N →∞.

Proof. We follow closely the proof of Lemma 8.3 in [5]. We prove the result by induction
on t. For t = 0, (4.3) follows trivially from the construction of X̃ and the fact that
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µ(N,i)(0) ⇒ µ(0) as N → ∞ by assumption. Now suppose we have that the result (4.3)
holds for some t ∈ N0. Then, for any s ∈ S,

1

k(N)

k(N)−1∑
n=0

1{XN
i,n(t+1)6=X̃N

i,n(t+1)}

=
1

k(N)

k(N)−1∑
n=0

(
1{XN

i,n(t+1)6=X̃N
i,n(t+1),XN

i,n(t)6=X̃N
i,n(t)}

+ 1{XN
i,n(t+1)6=X̃N

i,n(t+1),XN
i,n(t)=X̃

N
i,n(t)}

)
≤ 1

k(N)

k(N)−1∑
n=0

1{XN
i,n(t)6=X̃N

i,n(t)}
+
∑
s∈S

ANs ,

where,

ANs :=
1

k(N)

k(N)−1∑
n=0

1{XN
i,n(t+1)6=X̃N

i,n(t+1),XN
i,n(t)=X̃

N
i,n(t)=s}

.

By the inductive hypothesis, almost surely

lim
N→∞

1

k(N)

k(N)−1∑
n=0

1{XN
i,n(t)6=X̃N

i,n(t)}
= 0,

so it remains to show only that
∑

s∈S A
N
s → 0 almost surely as N →∞. We have that:

ANs =
1

k(N)
1{XN

i,0(t+1)6=X̃N
i,0(t+1),XN

i,0(t)=X̃
N
i,0(t)=s}

+
1

k(N)

k(N)−1∑
n=1

1{XN
i,n(t+1)6=X̃N

i,n(t+1),XN
i,n(t)=X̃

N
i,n(t)=s}

,

Since the first term is bounded by 1
k(N)

, as N → ∞ the first term goes to 0, so we need

only to focus on the summation in the second term. Note since the {XN
i,n(t+ 1)}n=1,...,N−1

are identically distributed, as are the {X̃N
i,n(t + 1)}n=1,...,N−1), the same method of proof

as for the homogeneous system on the complete graph analyzed in [5] applies.
In particular, for each s ∈ S and n = 1, . . . , k(N) − 1, we would like to rewrite the

quantity 1{XN
i,n(t+1)6=X̃N

i,n(t+1),XN
i,n(t)=X̃

N
i,n(t)=s}

as a function of the {ξi,n(t+ 1)}n∈{1,...,k(N)−1}.

Recalling the definition of the transition probabilities P 1
l′,s in (4.1), define:

LNs,l = min

(
l∑

l′=1

P 1
l′,s(µ

(N,s)(t)),
l∑

l′=1

P 1
l′,s(µ(t))

)
,

V N
s,l = max

(
l∑

l′=1

P 1
l′,s(µ

(N,i)(t)),
l∑

l′=1

P 1
l′,s(µ(t))

)
,

INs =
S⋃
s=1

(
LNs,l, V

N
s,l

]
.
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Thus, INs is the subset of [0, 1] on which the cumulative distribution functions, conditional
on XN

i,n(t) = X̃N
i,n(t) = s, of X̃N

i,n(t+ 1) and X̃N
i,n(t+ 1) differ, so we have that:

ANs =
1

k(N)
1{XN

i,0(t+1)6=X̃N
i,0(t+1),XN

i,0(t)=X̃
N
i,0(t)=s}

+
1

k(N)

k(N)−1∑
n=1

1{ξi,n(t+1)∈INs }.

Let G(N,i)(·) denote the empirical distribution function of the {ξi,n(t+1)}n∈{1,...,N−1}, that
is:

G(N,i)(x) =
1

N − 1

k(N)−1∑
n=1

1{ξi,n(t+1)≤x}

Then:

ANs ≤
1

k(N)
1{XN

i,0(t+1)6=X̃N
i,0(t+1),XN

i,0(t)=X̃
N
i,0(t)=s}

+

k(N)−1∑
n=1

(G(N,i)(V N
s,l )−G(N,i)(LNs,l))

By the triangle inequality,

ANs ≤
1

k(N)
1{XN

i,0(t+1)6=X̃N
i,0(t+1),XN

i,0(t)=X̃
N
i,0(t)=s}

+

k(N)−1∑
n=1

(
|G(N,i)(V N

s,l )− V N
s,l |+ |G(N,i)(LNs,l)− LNs,l|+ |V N

s,l − LNs,l|
)

≤ 1

k(N)
1{XN

i,0(t+1)6=X̃N
i,0(t+1),XN

i,0(t)=X̃
N
i,0(t)=s}

+ 2S sup
x∈[0,1]

|G(N,i)(x)− x|+
k(N)−1∑
n=1

|V N
s,l − LNs,l|

(4.4)

By the Glivenko-Cantelli lemma, almost surely

lim
N→∞

sup
x∈[0,1]

|G(N,i)(x)− x| = 0

Moreover, by our induction hypothesis, we have that µ(N,i)(t)⇒ µ(t) as N →∞, so since
the transition probability P 1

n,k(µ) as defined in (4.1) is continuous in µ by our Assumption
4.3, we have that the third term in (4.4) converges to 0 almost surely. Therefore, we have
that ANs → 0 almost surely and thus (4.3) holds for t+ 1.

Moreover,

||µ(N,i)(t+ 1)− µ̃(N,i)(t+ 1)|| ≤ 2

k(N)

k(N)−1∑
j=0

1{XN
i,j(t+1)6=X̃N

i,j(t+1)},

where the norm on the left is taken to be the L1 norm. The left-hand side converges to 0
almost surely by our previous argument, so almost surely

lim
N→∞

µ(N,i)(t+ 1) = µ(t+ 1).
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Thus, we have shown that in the limit, the evolution of the law of any vertex in a
cluster is autonomously defined, with no influence from vertices in the ring.

Step 2. We now study the limiting dynamics of vertices on the ring. This is similar in
spirit to the limits of dynamics on sparse graphs considered in Lacker, Ramanan, and Wu
[2], [6] with the difference that the dynamics are heterogeneous. Indeed, the ring consists
of two types of vertices, those which sit at the interface of the ring and cluster, and those
which do not. Thus, the construction of the limit system is more complicated, as is the
proof of a key correlation decay property that is used in the proof of convergence (see
Lemma 4.7).

Argument for Step 2.

Construction 4.5 (Limit System). Given α, F1, F2, F3, {λv}v∈V , {ξv(t)}v∈V,t∈N as in Def-
inition 4.2, we define the (infinite) limit system X = {Xv(t)}t∈N,v∈V as follows. Let
V = R∪C, where R = {ri}i∈Z and C = {ci}i∈Z. For all v ∈ V , Xv(0) ∼ λv. For all t > 0,
we define Xv(t+ 1) recursively as follows:

Xci(t+ 1) = F1(Xci(t), µ(t), ξci,n(t+ 1)) where µ(t) = Law(X(t)),

Xri(t+ 1) = F2(Xri(t), X∂ri
(t), µ(t), ξri(t+ 1)) if i ≡ 0 mod α,

Xri(t+ 1) = F3(Xri(t), X∂ri
(t), ξri(t+ 1)) if i 6≡ 0 mod α,

where µ is well-defined by Lemma 4.4.

We first state a technical lemma whose proof is straightforward intuitively, but some-
what notationally involved. The idea is to show that the trajectory of a fixed particle on
the ring up to a finite time t depends only on initial conditions within some finite radius,
as well as the cluster empirical distributions and noise within a “triangular area” of the
past.

Recall that RN denotes the set of vertices that lie in the ring structure GN . For a
radius r ∈ N, and root ρ ∈ RN , let Br(ρ) ⊂ RN denote the set of all vertices in RN

connected by paths of length at most r to ρ, in other words,

Br(ρ) = {v ∈ VN : |v − ρ| ≤ r} ∩RN

where |v − ρ| is the shortest path between v and ρ in the edge set En. Similarly, let
Br(ρ) ⊂ R denote the set

Br(ρ) = {v ∈ R : |v − ρ| ≤ r}

for R as given by Construction 4.5.

Definition 4.6. Given t ∈ N and root ρ ∈ Z, denote as T (t, ρ) the “triangular” subset
of N× Z given by the rule:

T (t, ρ) = {(s, r) ∈ N× Z : s ≤ t, r ∈ [ρ− t+ s, ρ+ t− s]}
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Lemma 4.7. Fix t ∈ N and root ρ ∈ R. Then there exists a measurable function ϕ(t,ρ) :
S2t+1 × P(S)T (t,ρ) × [0, 1]T (t,ρ) → St such that

XN
ρ [t] = ϕ(t,ρ)

(
XN
Bt(ρ)(0), {µ(N,i)(s)}(s,iα)∈T (t,ρ), {ξv(s)}(s,v)∈T (t,ρ)

)
. (4.5)

Moroever, given Assumption 4.3, the mapping

{µ(N,i)(s)}(s,iα)∈T (t,ρ) 7→ Law
(
ϕ(t,ρ)

(
XN
Bt(ρ)(0), {µ(N,i)(s)}(s,iα)∈T (t,ρ), {ξv(s)}(s,v)∈T (t,ρ)

))
(4.6)

is continuous.

Proof. We prove both statements by induction on t. For t = 0, the lemma is trivially true.
Suppose we have that (4.5) holds and the mapping (4.6) is continuous for some t ≥ 0.

Case 1. If ρ ≡ 0 mod α, we have that

XN
ρ (t+ 1) = F2(X

N
ρ (t), XN

∂ρ
(t), µ(N,ρ)(t), ξρ(t+ 1)).

Then by our assumption,

XN
ρ [t] = ϕ(t,ρ)

(
XN
Bt(ρ)(0), {µ(N,i)(s)}(s,iα)∈T (t,ρ), {ξr(s)}(s,v)∈T (t,ρ)

)
and

XN
∂ρ

[t] =
{
ϕ(t,ρ−1)

(
XN
Bt(ρ−1)(0), {µ(N,i)(s)}(s,iα)∈T (t,ρ−1), {ξv(s)}(s,v)∈T (t,ρ−1)

)
,

ϕ(t,ρ)

(
XN
Bt(ρ)(0), {µ(N,i)(s)}(s,iα)∈T (t,ρ), {ξv(s)}(s,v)∈T (t,ρ)

)
,

ϕ(t,ρ+1)

(
XN
Bt(ρ+1)(0), {µ(N,i)(s)}(s,iα)∈T (t,ρ+1), {ξv(s)}(s,v)∈T (t,ρ+1)

)}
.

Noting that T (t + 1, ρ) = T (t, ρ − 1) ∪ T (t, ρ) ∪ T (t, ρ + 1) ∪ {(t + 1, ρ)} and Bt+1(ρ) =
Bt(ρ) ∪Bt(ρ− 1) ∪Bt(ρ+ 1), we define:

ϕ(t+1,ρ)

(
XN
Bt+1(ρ)

(0), {µ(N,i)(s)}(s,iα)∈T (t+1,ρ), {ξv(s)}(s,v)∈T (t+1,ρ)

)
:=F2

(
ϕ(t,ρ)

(
XN
Bt(ρ)(0), {µ(N,i)(s)}(s,iα)∈T (t,ρ), {ξv(s)}(s,v)∈T (t,ρ)

)
,{

ϕ(t,ρ−1)
(
XN
Bt(ρ−1)(0), {µ(N,i)(s)}(s,iα)∈T (t,ρ−1), {ξv(s)}(s,v)∈T (t,ρ−1)

)
,

ϕ(t,ρ)

(
XN
Bt(ρ)(0), {µ(N,i)(s)}(s,iα)∈T (t,ρ), {ξv(s)}(s,v)∈T (t,ρ)

)
,

ϕ(t,ρ+1)

(
XN
Bt(ρ+1)(0), {µ(N,i)(s)}(s,iα)∈T (t,ρ+1), {ξv(s)}(s,v)∈T (t,ρ+1)

)}
, µ(N,ρ)(t), ξρ(t+ 1)

)
.

By Assumption 4.3, µ 7→ Law(F2(j, {k, j, l}, µ, ξ)) is continuous for any j, k, l ∈ S and by
our inductive assumption, Law(ϕ(t,ρ)),Law(ϕ(t,ρ)),Law(ϕ(t,ρ+1)) are continuous in the ar-
guments {µ(N,i)(s)}(s,iα)∈T (t,ρ−1), {µ(N,i)(s)}(s,iα)∈T (t,ρ), {µ(N,i)(s)}(s,iα)∈T (t,ρ+1), respectively,
so by composition, Law(ϕ(t+1,ρ)) is continuous in the argument {µ(N,i)(s)}(s,iα)∈T (t+1,ρ).

Case 2. If ρ 6≡ 0 mod α, we have that

XN
ρ (t+ 1) = F3(X

N
ρ (t), XN

∂ρ
(t), ξρ(t+ 1)).
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By a similar reasoning to Case 1, we define:

ϕ(t+1,ρ)

(
XN
Bt+1(ρ)

(0), {µ(N,i)(s)}(s,iα)∈T (t+1,ρ), {ξv(s)}(s,v)∈T (t+1,ρ)

)
:=F3

(
ϕ(t,ρ)

(
XN
Bt(ρ)(0), {µ(N,i)(s)}(s,iα)∈T (t,ρ), {ξv(s)}(s,v)∈T (t,ρ)

)
,{

ϕ(t,ρ−1)
(
XN
Bt(ρ−1)(0), {µ(N,i)(s)}(s,iα)∈T (t,ρ−1), {ξv(s)}(s,v)∈T (t,ρ−1)

)
,

ϕ(t,ρ)

(
XN
Bt(ρ)(0), {µ(N,i)(s)}(s,iα)∈T (t,ρ), {ξv(s)}(s,v)∈T (t,ρ)

)
,

ϕ(t,ρ+1)

(
XN
Bt(ρ+1)(0), {µ(N,i)(s)}(s,iα)∈T (t,ρ+1), {ξv(s)}(s,v)∈T (t,ρ+1)

)}
, ξρ(t+ 1)

)
.

By our inductive assumption, Law(ϕ(t,ρ)),Law(ϕ(t,ρ)),Law(ϕ(t,ρ+1)) are continuous in the
arguments {µ(N,i)(s)}(s,iα)∈T (t,ρ−1), {µ(N,i)(s)}(s,iα)∈T (t,ρ), {µ(N,i)(s)}(s,iα)∈T (t,ρ+1), respectively,
so by composition, Law(ϕ(t+1,ρ)) is continuous in the argument {µ(N,i)(s)}(s,iα)∈T (t+1,ρ).
Thus, ϕ(t+1,ρ) is defined for any ρ. Thus, we have shown that (4.5) holds and the mapping
(4.6) is continuous when t is replaced with t+1. Thus, by the principle of induction, (4.5)
holds and the mapping (4.6) is continuous for all t, which completes the proof.

Corollary 4.7.1. Fix t ∈ N and root ρ ∈ R. Then for ϕ(t,ρ) as defined in Lemma 4.7 and
X as given by Construction 4.5,

Xρ[t] = ϕ(t,ρ)

(
XBt(ρ)(0), {µ(s)}(s,iα)∈T (t,ρ), {ξv(s)}(s,v)∈T (t,ρ)

)
.

Moroever, given Assumption 4.3, the mapping

{µ(s)}(s,iα)∈T (t,ρ) 7→ Law
(
ϕ(t,ρ)

(
XBt(ρ)(0), {µ(s)}(s,iα)∈T (t,ρ), {ξv(s)}(s,v)∈T (t,ρ)

))
is continuous.

Proof. The proof is nearly identical to that of Lemma 4.7.

In the following corollary, we extend the result of Lemma 4.7 to show that the trajec-
tories up through time t of particles within a ball of radius r on the ring are a function
of initial conditions within a finite radius and noise and cluster empirical distributions
within a finite trapezoidal subset of the past. Let us extend the notation introduced in
Definition 4.6 as follows

T (t, Br(ρ)) :=
⋃

v∈Br(ρ)

T (t, v),

for t ∈ N0, root ρ ∈ Z, and r ∈ N0.

Corollary 4.7.2. In addition, fix a radius r ∈ N0. Then there exists a measurable function
Φr : S2r+2t+1 × P(S)T (t,Br(ρ)) × [0, 1]T (t,Br(ρ)) → SBr(ρ) such that

XN
Br(ρ)[t] = Φr

(
XN
Br+t(ρ)

(0), {µ(N,i)(s)}(s,iα)∈T (t,Br(ρ)), {ξv(s)}(s,v)∈T (t,Br(ρ))
)

and

{µ(N,i)(s)}(s,iα)∈T (t,Br(ρ)) 7→ Law
(
Φr

(
XN
Br+t(ρ)

(0), {µ(N,i)(s)}(s,iα)∈T (t,Br(ρ)), {ξv(s)}(s,v)∈T (t,Br(ρ))
))

(4.7)
is continuous.
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Proof. We prove the corollary by induction on r. For r = 0, both statements reduce to
the result in Lemma 4.7. Now assume that there exists such a Φr for some r ≥ 0. Then

XN
Br+1(ρ)

[t] = {XN
ρ−r−1[t], X

N
Br(ρ)[t], X

N
ρ+r+1[t]}

= {ϕ(t,ρ−r−1)
(
XN
Bt(ρ−r−1)(0), {µ(N,i)(s)}(s,πi)∈T (t,ρ−r−1), {ξv(s)}(s,v)∈T (t,ρ)

)
,

Φr

(
XN
Br+t(ρ)

(0), {µ(N,i)(s)}(s,iα)∈T (t,Br(ρ)), {ξv(s)}(s,v)∈T (t,Br(ρ))
)
,

ϕ(t,ρ+r+1)

(
XN
Bt(ρ+r+1)(0), {µ(N,i)(s)}(s,πi)∈T (t,ρ+r+1), {ξv(s)}(s,v)∈T (t,ρ)

)
}

=: Φr+1

(
XN
Br+t+1(ρ)

(0), {µ(N,i)(s)}(s,iα)∈T (t,Br+1(ρ)), {ξv(s)}(s,v)∈T (t,Br(ρ))
)

By Lemma 4.7 and the inductive assumption, for Φr+1 defined as such, the mapping in
(4.7.3) is continuous.

Corollary 4.7.3. In addition, fix a radius r ∈ N0. Then for Φr : S2r+2t+1×P(S)T (t,Br(ρ))×
[0, 1]T (t,Br(ρ)) → SBr(ρ) as defined in 4.7.2 and X as given by Construction 4.5,

XBr(ρ)[t] = Φr

(
XBr+t(ρ)(0), {µ(s)}(s,iα)∈T (t,Br(ρ)), {ξv(s)}(s,v)∈T (t,Br(ρ))

)
and

{µ(s)}(s,iα)∈T (t,Br(ρ)) 7→ Law
(
Φr

(
XBr+t(ρ)(0), {µ(s)}(s,iα)∈T (t,Br(ρ)), {ξv(s)}(s,v)∈T (t,Br(ρ))

))
is continuous.

Proof. The proof is nearly identical to that of Corollary 4.7.2.

Theorem 4.8. As N →∞, (RN , XN
R )⇒ (R,XR) in the sense of local convergence (see

Definition 3.4).

We follow a similar argument to the proof of Theorem 3.5 from [2].

Proof. Fix any root ρ ∈ RN . It is enough to show that for any time t ∈ N0, (RN , XN
R [t])⇒

(R,XR[t]). The local convergence of the ring graph to the infinite 1-dimensional lattice
is easy to show; the proof is thus omitted. It remains to show that for any r ∈ N0,

XN
Br(ρ)

[t]⇒ XBr(ρ)[t]. For N large enough, i.e. for N > 2t+ 2r + 1, XBt(v)(0)
(d)
= XN

Bt(v)
(0)

for any v ∈ Br(ρ). Notice that ⋃
v∈Br(ρ)

Bt(v) = Br+t(ρ).

By Corollary 4.7.2, there exists a measurable function Φ : S2r+2t+1 × P(S)T (t,Br(ρ)) ×
[0, 1]T (t,Br(ρ)) → SBr(ρ) such that

XN
Br(ρ)[t] = Φ

(
XN
Br+t(ρ)

(0), {µ(N,i)(s)}(s,iα)∈T (t,Br(ρ)), {ξv(s)}(s,v)∈T (t,Br(ρ))
)

and

{µ(N,i)(s)}(s,iα)∈T (t,Br(ρ)) 7→ Law
(
Φ
(
XN
Br+t(ρ)

(0), {µ(N,i)(s)}(s,iα)∈T (t,Br(ρ)), {ξv(s)}(s,v)∈T (t,Br(ρ))
))

is continuous. Then we have that, by 4.4,

lim
N→∞

Law
(
Φ
(
XN
Br+t(ρ)

(0), {µ(N,i)(s)}(s,iα)∈T (t,Br(ρ)), {ξv(s)}(s,v)∈T (t,Br(ρ))
))

= Law
(
Φ
(
XBr+t(ρ)(0), {µ(s)}(s,iα)∈T (t,Br(ρ)), {ξv(s)}(s,v)∈T (t,Br(ρ))

))
.

By Corollary 4.7.3 , this limit is precisely Law(XBr(ρ)[t]). Thus, XN
Br(ρ)

[t]⇒ XBr(ρ)[t].
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4.1.3 Local Equations for the Ring Cluster System

In this section, we focus on obtaining an autonomous characterization of the dynamics
for a finite subset of nodes in the limit system defined in Construction 4.5. As shown
in the proof of Proposition 4.10, this relies on a key conditional independence property
which can be deduced from results in Lacker, Ramanan, and Wu [2] (see also [3]), but for
which we provide a self-contained proof below. To do so, we construct a non-Markovian
stochastic process that is equal in law to the corresponding marginal dynamics of the
limit system.

cluster-ring interface ring

A

-2 -1 0 1 2 30 α− 2 α− 1 α

Figure 5: Diagram of the subsection of the ring structure of the limit system containing
the vertices A.

For α > 1, let A = {−1, 0, 1, . . . , α−1}, the set of node indices for which we will com-
pute the law of the marginal dynamics. (See Figure 5.) In Construction 4.9, we provide
a recursive definition of the stochastic process X = {Xv(t)}v∈A,t∈N0 . In Proposition 4.10,
we show that X is equal in law to XA.

Construction 4.9. Fix α, F1, F2, F3, {λv}v∈V , {ξv(t)}v∈V,t∈N as in Definition 4.2. For sim-
plicity, assume that λv are identical across v, meaning that we have i.i.d. initial conditions
at t = 0. For each t ∈ N0, let J t

A ∈ P(S |A|×(t+1)) be the law of XA[t], i.e.

J t
A(xA[t]) := P(XA[t] = xA[t])

for all xA[t] ∈ S |A|×(t+1). We define J t
A recursively over t ∈ N0 as follows.

(i) Set J 0
A = ⊗v∈Aλv.

(ii) For t > 0, assume J t
A is known. For x2(t) ∈ S, x1,0[t] ∈ S2×(t+1), x0(t) ∈ S, x2,1[t] ∈

S2×(t+1), let

ct−2(x2(t), x1,0[t]) := P
(
X2(t) = x2(t) | X1,0[t] = x1,0[t]

)
,

ctα(x0(t), x2,1[t]) := P
(
X0(t) = x0(t) | X2,1[t] = x2,1[t]

)
,
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where ct−2 is given in terms of J t
A as follows

ct−2(x2(t), x1,0[t]) =

∑
{y∈S|A|×t:y2(t)=x2(t),y1,0[t]=x1,0[t]} J t

A(yA[t])∑
{y∈S|A|×t:y1,0[t]=x1,0[t]} J t

A(yA[t])
,

and ctα can be represented similarly. (The reason for the notation of ct−2, c
t
α will

become clear in Proposition 4.10.) Now, for xA[t] ∈ S |A|×(t+1) define

P (x−1(t+ 1) | xA[t]) =
∑
x∈S

P(F3(x−1(t), {x, x−1(t), x0(t)}, ξ−1(t+ 1)) = x−1(t+ 1))

· ct−2(x, x−1,0[t]) (4.8)

and

P (xα−1(t+ 1) | xA[t]) =
∑
x∈S

P(F3(xα−1(t), {x, xα−1(t), xα−2(t)}, ξα−1(t+ 1)) = xα−1(t+ 1))

· ctα(x, xα−1,α−2[t]), (4.9)

where the probabilities on the right depend only on the law of ξv(t + 1), which is
given.

Furthermore, define

P (x0(t+ 1) | xA[t]) := P(F2(x0(t), x∂0(t), µ(t), ξ0(t+ 1)) = x0(t+ 1)) , (4.10)

P (xv(t+ 1) | xA[t]) := P(F3(xv(t), x∂v(t), ξv(t+ 1)) = xv(t+ 1)) (4.11)

for v ∈ {1, . . . , α− 2}, xA[t] ∈ S |A|×(t+1), x0(t+ 1), xv(t+ 1) ∈ S and µ is defined as
constructed in Lemma 4.4. As before, the probabilities on the right depend only on
the law of ξv(t+ 1), which is given. Finally let

J t+1
A (xA[t+ 1]) :=

(∏
v∈A

P (xv(t+ 1) | xA[t])

)
· J t
A(xA[t]).

In the following proposition, we show that XA
(d)
= XA, and thereby also verify that the

construction of JA indeed yields a valid probability distribution.

Proposition 4.10. Fix α, F1, F2, F3, {λv}v∈V , {ξv(t)}v∈V,t∈N as in Definition 4.2 and let
X be as defined in Construction 4.5 and XA have law JA, as given by Construction 4.9.

Then XA
(d)
= XA.

Proof. We prove the result by induction on t. For t = 0, by the i.i.d. assumption, it is

clear that XA(0)
(d)
= XA(0). Now fix t > 0 and assume that XA[t]

(d)
= XA[t]. Thus, we

need only show that:

P(XA(t+ 1) = xA(t+ 1) | XA[t] = xA[t]) = P
(
XA(t+ 1) = xA(t+ 1) | XA[t] = xA[t]

)
25



By the independence of the ξv(t+ 1) over v ∈ A, we have that Xv(t+ 1) are independent
given XA[t] = xA[t] for v ∈ A \ {−1, α− 1} = {0, 1, . . . , α− 2}, so

P(XA(t+ 1) = xA(t+ 1) | XA[t] = xA[t])

= P
(
X−1,α−1(t+ 1) = x−1,α−1(t+ 1) | XA\{−1,α−1}(t+ 1) = xA\{−1,α−1}(t+ 1), XA[t] = xA[t]

)
·

∏
v∈A\{−1,α−1}

P(Xv(t+ 1) = xv(t+ 1) | XA[t] = xA[t]) .

By the Markovian transition dynamics of X, we have that for every v ∈ A \ {−1, α− 1},

P(Xv(t+ 1) = xv(t+ 1) | XA[t] = xA[t]) = P (xv(t+ 1) | xA[t]),

where P is as defined in Equations (4.10) and (4.11). Applying the conditional indepen-
dence property 3.7, we have that

P
(
X−1,α−1(t+ 1) = x−1,α−1(t+ 1) | XA\{−1,α−1}(t+ 1) = xA\{−1,α−1}(t+ 1), XA[t] = xA[t]

)
= P

(
X−1(t+ 1) = x−1(t+ 1) | XA\{−1,α−1}(t+ 1) = xA\{−1,α−1}(t+ 1), XA[t] = xA[t]

)
· P
(
Xα−1(t+ 1) = xα−1(t+ 1) | XA\{−1,α−1}(t+ 1) = xA\{−1,α−1}(t+ 1), XA[t] = xA[t]

)
(4.12)

Now, taking the first term in the product,

P
(
X−1(t+ 1) = x−1(t+ 1) | XA\{−1,α−1}(t+ 1) = xA\{−1,α−1}(t+ 1), XA[t] = xA[t]

)
=
∑
x∈S

P
(
X−1(t+ 1) = x−1(t+ 1), X−2(t) = x | XA\{−1,α−1}(t+ 1) = xA\{−1,α−1}(t+ 1), XA[t] = xA[t]

)
=
∑
x∈S

P
(
X−1(t+ 1) = x−1(t+ 1) | X−2(t) = x,XA\{−1,α−1}(t+ 1) = xA\{−1,α−1}(t+ 1), XA[t] = xA[t]

)
· P
(
X−2(t) = x | XA\{−1,α−1}(t+ 1) = xA\{−1,α−1}(t+ 1), XA[t] = xA[t]

)
=
∑
x∈S

P(X−1(t+ 1) = x−1(t+ 1) | X−2(t) = x,X−1,0(t) = x−1,0(t)) · P(X−2(t) = x | XA[t] = xA[t])

=
∑
x∈S

P(F3(x−1(t), {x, x−1(t), x0(t)}, ξ−1(t+ 1)) = x−1(t+ 1))) · ct−2(x, x−1,0[t])

= P (x−1(t+ 1) | xA[t])

as defined in Construction 4.9, where the third equality follows from the Markovian tran-
sition dynamic of X and the fourth from the conditional independence property 3.7.
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Similarly, we can rewrite the second term of the right-hand side of equation (4.12) as

P
(
Xα−1(t+ 1) = xα−1(t+ 1) | XA\{−1,α−1}(t+ 1) = xA\{−1,α−1}(t+ 1), XA[t] = xA[t]

)
=
∑
x∈S

P
(
Xα−1(t+ 1) = xα−1(t+ 1), Xα(t) = x | XA\{−1,α−1}(t+ 1) = xA\{−1,α−1}(t+ 1), XA[t] = xA[t]

)
=
∑
x∈S

P
(
Xα−1(t+ 1) = xα−1(t+ 1) | Xα(t) = x,XA\{−1,α−1}(t+ 1) = xA\{−1,α−1}(t+ 1), XA[t] = xA[t]

)
· P
(
Xα(t) = x | XA\{−1,α−1}(t+ 1) = xA\{−1,α−1}(t+ 1), XA[t] = xA[t]

)
=
∑
x∈S

P(Xα−1(t+ 1) = xα−1(t+ 1) | Xα(t) = x,X−1,0(t) = x−1,0(t)) · P(Xα(t) = x | XA[t] = xA[t])

=
∑
x∈S

P(F3(xα−1(t), {x, xα−1(t), xα−2(t)}, ξα−1(t+ 1)) = x−1(t+ 1))) · ctα(x, xα−1,α−2[t])

= P (xα−1(t+ 1) | xA[t])

Thus, we conclude that

P(XA[t+ 1] = xA[t+ 1]) = P
(
XA[t+ 1] = xA[t+ 1]

)
.
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5 Opinion Dynamics on Deterministic and Random

Graph Structures

In this section, we consider LIMC with two particular transition dynamics, both repre-
senting opinion formation: the voter model and majority dynamics. For simplicity, we
restrict ourselves to a binary space {0, 1}, where the two values could represent, for in-
stance, two different political parties or yes and no votes for a referendum. In the voter
model, at every time t, each person in the system decides their opinion at t + 1 based
on the average opinion of their neighbors within the interaction graph. In the majority
dynamics, the decision is based on the majority opinion of the neighbors, with ties broken
by a fair coin flip.

In Sections 5.1 and 5.2 we give numerical results for the voter model and majority
dynamics, respectively, on a variety of sparse and dense, deterministic and random graph
sequences.

5.1 Voter Model on Deterministic and Random Graphs

The voter model is a particular family of locally interacting Markov dynamics which
represents opinion formation. Let the state space S = {0, 1} denote two possible opinions,
and let Xv(t) represent the opinion of person v at time t. Then the voter model describes
the dynamics in which at each time t + 1, person v decides their opinion by flipping a
biased coin, with the probability of choosing opinion 1 given by the proportion of v’s
neighbors holding opinion 1. More formally, in the notation of Definition 2.2, the voter
model dynamics is are specified as follows.

Definition 5.1 (Voter model). Let {ξv(t)}v∈V,t∈N be i.i.d. with the Unif([0, 1]) distribu-
tion. Then, fixing a parameter λ ∈ [0, 1], for any v ∈ V , t ∈ N0, in the notation of
Definition 2.2, the voter model transition functions are given by

F 0
v,λ(ξ) := 1{ξ≤λ}

F (xv(t), x∂v(t), ξ) := 1{ξ≤ 1
|∂v|

∑
u∈∂v xu(t)}

for t ≥ 0.

Thus, for t ≥ 0:

Xv(t+ 1) =

{
1 w.p. 1

|∂v|

∑
u∈∂vXu(t)

0 w.p. 1− 1
|∂v|

∑
u∈∂vXu(t)

5.1.1 Dynamics of a single particle

A question of interest is the marginal evolution of the opinion of a single person within
the system, that is, for a fixed v ∈ V we want to characterize the evolution of the
marginal distribution of Xv(t), t ∈ N0. We can investigate this question computationally
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Figure 6: Computational estimates of the marginal probability (5.1) for simulated voter
model dynamics for time t = 0, . . . , 40 on deterministic graph structures with initial
parameter λ = 0.3 for vertex set sizes n = 10, 20, 40, 80. (I = 103.) The corresponding
mean field approximation is indicated by the green line.

by simulating the voter model dynamics and computing the following numerical estimator
for the marginal probability

P (I)
v (t) :=

I∑
i=1

1{X(i)
v (t)=1}, (5.1)

where I denotes the number of iterations of the simulation, and X(i) is the realization
of the simulated dynamics on the ith iteration. Figure 6 visualizes the numerically com-
puted results for the marginal probability, which motivates us to formulated the following
conjecture.

From the computational results shown in Figures 6 and 7, we see that on average the
empirical marginal probability stays constant and equal to the initial probability of the
node taking value 1 at time 0, regardless of the graph structure. This motivates us to
formulate the following conjecture.

Conjecture 5.2. For the voter model dynamics on any graph, as given in Definition 5.1,

Xv(t) =

{
1 w.p. λ,

0 w.p. 1− λ
for any v ∈ V, t ∈ N.

Lemma 5.3. Conjecture 5.2 holds for t = 1.

Proof. Let N := |∂v|.

P(Xv(1) = 1) =
N∑
k=0

P

Xv(1) = 1

∣∣∣∣∣∣
∑
i∈∂v

Xi(0) = k

P

∑
i∈∂v

Xi(0) = k


=

N∑
k=0

k

N

(
N

k

)
λk(1− λ)N−k =

N∑
k=1

k

N

N !

k!(N − k)!
λk(1− λ)N−k
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Figure 7: Computational estimates of the marginal probability (5.1) for simulated voter
model dynamics for time t = 0, . . . , 40 on ER graph sequences (dense above, sparse
below) with initial parameter λ = 0.3 for vertex set sizes n = 10, 20, 40, 80. (I = 103.)
The corresponding mean field approximation is indicated by the green line.
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Rearranging terms, we obtain:

P(Xv(1) = 1) =
N∑
k=1

(N − 1)!

(k − 1)!(N − k)!
λk(1− λ)N−k

=
N−1∑
k=0

(N − 1)!

k!(N − 1− k)!
λk+1(1− λ)N−1−k

= λ
N−1∑
k=0

(
N − 1

k

)
λk(1− λ)(N−1)−k

= λ.

It is easy to show that this single-node marginal distribution corresponds exactly to
the mean field limit for the voter model for i.i.d. Bernoulli(λ) initial conditions. To apply
Theorem 3.1, we identify the following forms for the memory and transition probability
of the voter model:

Rn(t) = µn1 (t), g(Rn(t), µn(t+ 1)) = µn1 (t+ 1),

Kn
a,b(r) = (r)b (1− r)1−b .

By the strong law of large numbers, µi(0) = λ1{i=1} + (1 − λ)1{i=0}, ρ(0) = λ By
induction, one can prove that µ(t) = µ(0) and ρ(t) = λ for all t ≥ 0, so:

lim
n→∞

µn(t) = λ1{i=1} + (1− λ)1{i=0} and lim
n→∞

Rn(t) = λ.

In the case of random graphs, we consider the quenched marginal probability for a
“typical” node in a random graph. For a random graph G = (V,E), we define the marginal
quenched probability to be given by

EG,ρ[P(Xρ(t) | G, ρ)]

where the randomly chosen root ρ is distributed uniformly on V . The numerical estimator
for the quenched probability is computed by:

1

I

I∑
i=1

1{X(i)
ρ(i)

(t)=1}

Assuming that the conjecture is true, we see that the one-node marginal is invariant
under the graph structure. In particular, the behavior between sparse and dense grpahs
sequences does not appear to be different. Therefore, we consider the pairwise marginal
of two neighboring nodes within the graph.
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5.1.2 Simulations for pairwise marginals

In the following lemma, we verify that the pairwise marginal distribution for the voter
model differs from the mean field approximation.

Lemma 5.4. Let Gn be the ring graph on n vertices and X the voter model dynamics on
Gn. Then the joint distribution of Xj(1), Xj+1(1) is given by:

P(Xj(1) = x,Xj+1(1) = y) =


7λ2

9
+ 2λ

9
if (x, y) = (1, 1)

1− 16λ
9

+ 7λ2

9
if (x, y) = (0, 0)

14λ
9
− 14λ2

9
if (x, y) ∈ {(0, 1), (1, 0)}

0 if x, y /∈ {0, 1}

Proof.

P(Xj(1) = 1, Xj+1(1) = 1) = λ2P(Xj(1) = 1, Xj+1(1) = 1 | Xj(0) = 1, Xj+1(0) = 1)

+ 2λ(1− λ)P(Xj(1) = 1, Xj+1(1) = 1 | Xj(0) = 0, Xj+1(0) = 1)

+ (1− λ)2P(Xj(1) = 1, Xj+1(1) = 1 | Xj(0) = 0, Xj+1(0) = 0)

= λ2P(Xj(1) = 1 | Xj(0) = 1, Xj+1(0) = 1)

· P(Xj+1(1) = 1 | Xj(0) = 1, Xj+1(0) = 1)

+ 2λ(1− λ)P(Xj(1) = 1 | Xj(0) = 0, Xj+1(0) = 1)

· P(Xj+1(1) = 1 | Xj(0) = 0, Xj+1(0) = 1)

+ (1− λ)2P(Xj(1) = 1 | Xj(0) = 0, Xj+1(0) = 0)

· P(Xj+1(1) = 1 | Xj(0) = 0, Xj+1(0) = 0)

= λ2P(Xj(1) = 1 | Xj(0) = 1, Xj+1(0) = 1)2

+ 2λ(1− λ)P(Xj(1) = 1 | Xj(0) = 0, Xj+1(0) = 1)2

+ (1− λ)2P(Xj(1) = 1 | Xj(0) = 0, Xj+1(0) = 0)2

= λ2(λ+ 2
3
(1− λ))2 + 2λ(1− λ)(2

3
λ+ 1

3
(1− λ))2 + (1− λ)2(1

3
λ)2

=
7λ2

9
+

2λ

9

P(Xj(1) = 0, Xj+1(1) = 0) =
7(1− λ)2

9
+

2(1− λ)

9

= 1− 16λ

9
+

7λ2

9

From Figures 8 and 9, we see that both for deterministic and random graph sequences,
the dynamics for dense sequences (the complete graph and dense ER sequences) converge
to the mean field limit, while the dynamcis in sparse sequences are clearly far away
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Figure 8: Empirical pairwise marginal probability (5.1) for simulated voter model dy-
namics for time t = 0, . . . , 40 on complete and ring graphs with initial parameter λ = 0.3
for vertex set sizes n = 10, 20, 40, 80, 160. (I = 103.) The corresponding mean field
approximation is indicated.
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Figure 9: Empirical pairwise marginal probability P(X1(t) +X2(t) = 2) (5.1) for simu-
lated voter model dynamics for time t = 0, . . . , 40 on ER graph sequences (dense above,
sparse below) with initial parameter λ = 0.3 for vertex set sizes n = 10, 20, 40, 80, 160.
(I = 103.) The corresponding mean field approximation is indicated by the green line.
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from the mean field limit, even for relatively small t. In subsection 5.3, we will discuss
simulations for the local approximation of sparse LIMC sequences, based on the results
of [2] (see Section 3.2).

5.2 Majority Dynamics

For a graph Gn = (Vn, En) on n vertices, where Vn = {1, . . . , n} and En ⊂ Vn×Vn. Define
the process X(t) = {Xj(t)}j∈Vn for every t ∈ N by the transition

Xj(t+ 1) =


1 if 1

|∂j|

∑
i∈∂j Xi(t) >

1
2

0 if 1
|∂j|

∑
i∈∂j Xi(t) <

1
2

ξt if 1
|∂j|

∑
i∈∂j Xi(t) = 1

2

where {ξt}t∈N0 are i.i.d. with Bernoulli
(
1
2

)
distribution. and initial distribution

Xj(0) =

{
1 w.p. λ

0 w.p. 1− λ

for some fixed parameter λ ∈ [0, 1].
The majority dynamics are of interest in comparison to the voter model, since the

marginal dynamics of a single node depend on the graph structure, as demonstrated by
the simulation results in Figures 10, 11, and 12 for complete and ring graphs, dense and
sparse ER random graphs, and d-regular trees, respectively.

Computations for P(Xj(1) = 1)

For a ring graph on n vertices:

P(Xj(1) = 1) = p3 + 3p2(1− p) = −2p3 + 3p2

For a complete graph n vertices:

P(Xj(1) = 1) =



1

2

(
n
n
2

)
p
n
2 (1− p)n2 +

n∑
k=n

2
+1

(
n

k

)
pk(1− p)n−k if n even

n∑
k=n−1

2
+1

(
n

k

)
pk(1− p)n−k if n odd

P(·) MF

X1(1) +X2(1) = 2 0.14 0.09
X1(1) +X2(1) = 1 0.54 0.42
X1(1) +X2(1) = 0 0.33 0.49

Table 1: Simulated values representing Lemma 5.4 as compared with the corresponding
mean field approximation of each probability. λ = 0.3, I = 103
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Figure 10: Empirical marginal probability P(X1(t) = 1) (5.1) for simulated majority dy-
namics for time t = 0, . . . , 40 on complete and ring graph sequences with initial parameters
λ = 0.3, 0.5 for vertex set sizes n = 10, 20, 40, 80, 160. (I = 103.)
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Figure 11: Empirical marginal probability P(X1(t) = 1) (5.1) for simulated majority dy-
namics for time t = 0, . . . , 40 on ER graph sequences (dense above, sparse below) with
initial parameter λ = 0.3 for vertex set sizes n = 10, 20, 40, 80, 160. (I = 103.)
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Figure 12: Empirical marginal probability P(X1(t) = 1) (5.1) for simulated majority dy-
namics for time t = 0, . . . , 40 on 3- and 4-regular tree sequences with initial parameters
λ = 0.3, 0.5 for total tree levels 2, 3, 4, 5. (I = 103.)
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More generally, for a vertex j with |∂j| = N :

PN
j := P(Xj(1) = 1) =



1

2

(
N
N
2

)
p
N
2 (1− p)N2 +

N∑
k=N

2
+1

(
N

k

)
pk(1− p)N−k if N even

N∑
k=N−1

2
+1

(
N

k

)
pk(1− p)N−k if N odd

Now let Gn = ER(n, pn) for some fixed n. Then:

EGn [P(Xj(1) = 1)] = EN

 N∑
k=0

P

Xj(1) = 1

∣∣∣∣∣∣
∑
i∈∂j

Xi(0) = k

P

∑
i∈∂j

Xi(0) = k


=

n∑
N=1

PN
j

(
n

N

)
pNn (1− p)N−n

Remark. When p = 1
2

and |∂j| = N ,

PN
j = P(Xj(1) = 1) =



1

2N

1

2

(
N
N
2

)
+

N∑
k=N

2
+1

(
N

k

) if N even

1
2N

 N∑
k=N−1

2
+1

(
N

k

) if N odd

=

{
1
2N
· 2N−1 if N even

1
2N
· 2N−1 if N odd

=
1

2

5.3 Local Approximation for Sparse Graphs

5.3.1 Motivation

From the simulations above, it is clear that even after a short time, the mean field ap-
proximation performs well for dense graph sequences, but performs poorly for sparse
graph sequences, for those dynamics which exhibit different effects for marginal dynamics
depending on the graph structure. We can quantify these observations succinctly by sum-
marizing the total variation distance between the marginal distributions for simulated
full dynamics and the corresponding mean field approximation. Recall that in general
the total variation distance between two probability distributions P,Q on a discrete state
space X is given by

δ(P,Q) :=
∑
x∈X

|P (x)−Q(x)|.

In some cases, the total variation distance is normalized by a factor of 1
2

to take values in
[0,1].
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graph n t = 0 t = 10 t = 40

complete
10 0.0043 0.2732 0.4135

δ(P t
G, P

t
MF)

160 0.0052 0.0259 0.0900

ER(n, 0.4)
10 0.0130 0.2750 0.4150
160 0.0220 0.0420 0.0900

ER
(
n, log(n)

n

) 10 0.0230 0.2990 0.4140
160 0.0220 0.0700 0.1250

ER(n, 1
n
)

10 0.0380 0.3870 0.4190
160 0.0320 0.3500 0.3980

Table 2: Total variation between the empirical neighbor marginal distribution P t
G (aver-

aged over 103 trials) for the voter model on dense graphs and the corresponding mean
field approximation P t

MF .

local approximation mean field
δ(P t

Rn
, P t

loc) δ(P t
Rn
, P t

MF)

graph n t = 0 t = 4 t = 8 t = 0 t = 4 t = 8

ring
10 0.0069 0.0070 0.0054 0.0085 0.1979 0.2573
160 0.0117 0.0101 0.0044 0.0092 0.2062 0.2507

Table 3: Total variation between the empirical neighbor marginal distribution P t
G (aver-

aged over 103 trials) for the voter model on and the corresponding local approximation
P t
loc on the sequence of ring graphs on n vertices, {Rn}.

In Table 2, we give values for the total variation distance between the numerically
simulated empirical distribution of a pair of neighboring particles and the corresponding
mean field approximation for a variety of graph sequences. For small n, the empirical
distribution differs from the mean field for all graph sequences. For larger n, the em-
pirical distributions associated with dense sequences, like complete graphs, ER(n, 0.4),

and ER
(
n, log(n)

n

)
, is close to the corresponding mean field approximation; however, the

distance is large for sparse sequences, like ER(n, 1
n
).

By comparison, in Table 3, we show the corresponding comparison of total variation
distance between the empirical neighbor marginal distribution and the local approxima-
tion developed by Lacker, Ramanan, and Wu [2] (see Section also 3.2) on ring graphs. In
this case, as in the case of ER(n, 1

n
), the mean field performs poorly for large n, while

the local approximation closely matches the dynamics of the finite system. One can see
heuristically in Figure 13 that the local approximation matches the dynamics on the ring
closely even for small t and n.
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Figure 13: Empirical marginal probability P(X1(t) = 1, X2(t) = 1) (5.1) for simulated
voter model for time t = 0, . . . , 8 on the ring graph sequence with initial parameters
λ = 0.3 compared with the corresponding local approximation. (I = 103.)

5.3.2 Local Equations on Unimodular Galton Watson Trees

In [2], Lacker, Ramanan, and Wu develop a local recursion for the marginal dynamics of
UGW trees. (Recall Definition 2.12.) To simulate the local dynamics of a LIMC on a
UGW tree, we compute explicitly the local equations for the law of the root node and
its (random) neighborhood of nodes in the first generation of the tree. More formally,
we wish to characterize the distribution of the root node and its neighborhood of LIMC
dynamics on a UGW tree with infinite number of levels.

For any time t ∈ N0, we compute the joint distribution of (N ;X∅[t];X1,...N [t]), where
N is the size of the root neighborhood (N ∼ ρ̂), and X1,...N are the dynamics of the
children of the root node, whose index is denoted ∅.

See the appendix for the computations of the law as well as pseudocode for recursively
obtaining the distribution of the root node and its neighborhood numerically. Here we
discuss a few of the main questions arising from simulating the local dynamics of LIMC
on UGW trees. The key difficulty is that to compute the joint distribution even for
small t requires storing a joint probability distribution over a large state space, which
becomes intractable to compute both in terms of memory and computation time. Since
the local dynamics are non-Markovian, in principle, the value of the particles at a time
t in principle depends on the entire history of the local system up to that time. To
mitigate the memory concerns, one could cut off the history after some finite κ number of
steps, an approximation which has been shown numerically to be relatively accurate for
other dynamics on deterministic graphs [9], [10]. However, there remain many compelling
questions regarding numerical computation of the local equations for UGW trees which
could be investigated further.
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6 Discussion and Further Questions

In this thesis, we introduced the ring cluster model and showed that by applying and
extending techniques for dense and sparse LIMC sequences, one can characterize the
limit of the ring cluster model and compute its marginal dynamics. In particular, since
the model is heterogeneous, both the prelimit and limit systems have nodes of different
types: nodes on the ring fall under the sparse regime, while nodes within the cluster
fall under the dense regime, with some nodes sitting at the interface of the sparse ring
and the dense cluster, and they all interact with each other. We showed in Section 4
that nodes in the dense subset of the graph converged to (Markovian) mean field limits,
while nodes in the interface and ring subsets converge locally to a limiting system whose
marginal dynamics were equal in law to a certain recursively constructed non-Markovian
discrete-time stochastic process.

As a first step, the setting of the ring cluster model is useful in showing how the tech-
niques for dense and sparse LIMC sequences may be combined. In further work, we would
like to extend our understanding to a broader class of heterogeneous graph sequences, de-
terministic and random. Using a similar approach to ours, one could generalize the model
to a greater variety of sparse structures for which local limits are known (e.g. d-regular
trees, Galton-Watson trees) and dense clusters (e.g. dense Erdős-Rényi random graph
sequences). Ultimately, we would like to further our theory of limits and understand
random systems with less structured heterogeneity, such as the stochastic block model or
generalized random graph.

Furthermore, we aim to use the characterization of the limit system and marginal
dynamics to study properties of heterogeneous systems. Applications in neuroscience are
of special interest, since cortical tissue in the brain has been shown to have dense clusters
of neurons between which there are only sparse neural connections [7]. The discrete Ku-
ramoto model is a particular model of coupled oscillators which exhibits synchronization
patterns that mirror oscillatory phenomena in the cortex [8]. Our results concerning the
marginal dynamics of a within large collection of particles could give insight on various
phenomena within heterogeneous neural structures.
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Appendix: Local Equations on Unimodular Galton-

Watson Trees

Here we provide the explicit computation for the local equations on UGW, as developed
in [2].

γk(m, z2,...,m(k) | x∅[k], x1[k]) =
E
[
m
N1
1{N0=m,X2,...,m(k)=z2,...,m(k)}

∣∣X∅,1[k] = x∅,1[k],1{N0≥1} = a
]

E
[
N0

N1

∣∣X∅,1[k] = x∅,1[k], N0 ≥ 1
]

numerator = m
∞∑

n1=1

1

n1

· P
(
X2,...,m(k) = z2,...,m(k), N0 = m,N1 = n1 | X∅,1[k] = x∅,1[k],1{N0≥1} = a

)
denominator =

∞∑
n0,n1=1

n0

n1

· P
(
N0 = n0, N1 = n1 | X∅,1[k] = x∅,1[k], N0 ≥ 1

)

Jt(n0, n1, x0,1,...,n0 [t]) = P(N0 = n0, N1 = n1, X0,1,...,n0 [t] = x0,1,...,n0 [t])

αt(z2,...,m(t),m, n1 | x∅,1[t]) := P
(
X2,...,m(t) = z2,...,m(t), N0 = m,N1 = n1 | X∅,1[t] = x∅,1[t]

)
βt(n0, n1 | x∅,1[t]) := P

(
N0 = n0, N1 = n1 | X∅,1[t] = x∅,1[t], N0 ≥ 1

)
=

∑
{y{2,...,n0}(t)}

αt(y2,...,n0(t), n0, n1 | x∅,1[t])

numerator = m
∞∑

n1=1

1

n1

αt(z2,...,m(t),m, n1 | x∅,1[t])

denominator =
∞∑

n0,n1=1

n0

n1

· βt(n0, n1 | x∅,1[t])

Suppose that for some time t ≥ 1 we know Jt(n0, n1, x0,1,...,n0 [t]) for all n0, n1 ∈ N and
x0,1,...,n0 [t] ∈ S(t+1)(n0+1).

We wish to compute Jt+1. In fact,

Jt+1(n0, n1, x0,1,...,n0 [t+ 1])

=

(∗)︷ ︸︸ ︷
P(X0,1,...,n0(t+ 1) = x0,1,...,n0(t+ 1) | N0 = n0, N1 = n1, X0,1,...,n0 [t] = x0,1,...,n0 [t])

· Jt(n0, n1, x0,1,...,n0 [t])

We can further rewrite (∗) as follows:

(∗) =
P(N1 = n1, X0,1,...,n0(t+ 1) = x0,1,...,n0(t+ 1) | N0 = n0, X0,1,...,n0 [t] = x0,1,...,n0 [t])

P(N1 = n1 | N0 = n0, X0,1,...,n0 [t] = x0,1,...,n0 [t])
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The denominator of this expression can be computed from Jt:

P(N1 = n1 | N0 = n0, X0,1,...,n0 [t] = x0,1,...,n0 [t]) =
Jt(n0, n1, x0,1,...,n0 [t])∑∞
n=1Jt(n0, n, x0,1,...,n0 [t])

While the numerator can be rewritten in terms of the transition probability function and
γt:

numerator of (∗) =
∞∑

n2,...,nn0=1

∑
{yj1,...,jcj }
j=2,...,n0

P (x0(t+ 1)|n0;x0,1,...,n0(t))

·
n0∏
j=1

(P (xj(t+ 1)|nj;x0,j(t), yj1,...,jcj(t))
· γt(nj, yj1,...,jcj(t)|xj[t], x0[t]))

Now that we have computed Jt+1, we marginalize and condition to compute αt+1 and
βt+1.

Define:

at+1(z2,...,m(t+ 1),m, n1, x∅,1[t+ 1])

:= P
(
X2,...,m(t+ 1) = z2,...,m(t+ 1), N0 = m,N1 = n1, X∅,1[t+ 1] = x∅,1[t+ 1]

)
=

∑
{x2,...,m[t]}

Jt+1(n0, n1, x0,1,...,n0 [t+ 1])

Then:

αt+1(x2,...,m(t+1),m, n1 | x∅,1[t+1]) =
at+1(x2,...,m(t+ 1),m, n1, x∅,1[t+ 1])∑

{y2,...,m(t+1),N0,N1}at+1(y2,...,m(t+ 1), N0, N1, x∅,1[t+ 1])

and

βt+1(m,n1 | x∅,1[t+ 1]) =
∑

{y2,...,m(t+1)}

αt+1(y2,...,m(t+ 1),m, n1 | x∅,1[t+ 1])

γk(m, z1,...,m[k] | x∅,1[k]) = Law (N0, (X1,...,N0) | X∅,1[k] = x∅,1[k])

∣∣∣∣
N0=m,X1,...,N0

[k]=z1,...,m[k]

αk(x∅[k], z1,...,m[k] | m,n1) = P
(
X1,...,m[k] = z1,...,m[k], X∅[k] = x∅[k] | N0 = m,N1 = n1, N0 ≥ 1

)
βk(x∅,1[k] | n0, n1) = P

(
X∅,1[k] = x∅,1[k] | N0 = n0, N1 = n1, N0 ≥ 1

)
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Algorithm 2 Simulate dynamics on UGW

n0 ∼ Poisson(c)
X̂∅,1,...,n0(0) ∼ λn0+1

for t = 1, . . . , T do

X̂∅(t+ 1)← transition
(
X̂∅[t], n0, X̂∅,1,...,n0[t]

)
for j = 1, . . . , n0 do

(nj, xj1,...,jnj [t]) ∼ γt( · , · | X̂j[t], X̂∅[t])

X̂j(t+ 1)← transition
(
X̂j[t], nj, xj1,...,jnj [t]

)
end for

end for
function transition(parent, N , children)

x ∼ Bernoulli((parent + children)/(N+1))
return x

end function
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Algorithm 1 Calculate γ

c← Poisson children distribution parameter
M ← neighbor maximum
T ← time maximum
λ← initial distribution of node
f([ · ])← transition probability function
P ← P(N0 = · , N1 = · | N0 > 0)
for m = 0, . . . ,M do

γ0(m, [ · ] | · ) = P(N0 = m)× λm
α0([ · ], · | m, · ) = λm+1

β0( · , · | · , · ) = λ2

end for
for t = 1, . . . , T do

αt+1 = compute alpha(αt, γt)

βt+1 =
∑
∗

αt+1([ · , ∗], · | · , · )

for m = 0, . . . ,M do

γt+1(m, [ · ] | · ) =
M∑

n1=1

P (m,n1) · αt+1([ · ], · | m,n1)·
(

M∑
n0=1

1
n0
P (n0, n1) · βt+1( · , · | n0, n1)

)−1
end for

end for

function compute alpha(αt, γt)
for m = 0, . . . ,M do

for all x ∈ S(t+2)(m+1), do
αt+1(x | m, · ) = f(x∅,1,...,m[t+ 1]) · αt(x | m, · )

·
(∑
∗

f(x1[t+ 1], ∗) · γt(n1, ∗ | x∅,1[t+ 1]) · (P(N1 = n1 | N0 ≥ 0))−1

)

·
m∏
j=2

∗ ∗ ∗ ∗ ∗+
M∑
nj=2

(∑
∗

f(x1[t+ 1], ∗) · γt(nj − 1, ∗ | x∅,1[t+ 1])

)
end for

end for
return αt+1

end function
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