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Introduction to Bourgain’s slicing problem

Statement of Bourgain’s slicing problem

Bourgain’s slicing problem

Let K ⊆ Rn be a convex body of volume 1. Is there a hyperplane H ⊆ Rn

such that
Voln−1(K ∩ H) > c

for some universal constant c > 0?

Denote
1

Ln
:= inf

K⊆Rn
sup
H⊆Rn

Voln−1(K ∩ H).
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Introduction to Bourgain’s slicing problem

Statement of Bourgain’s slicing problem

Bourgain’s slicing problem

Is there a universal constant C > 0 such that Ln ≤ C?

Denote
1

Ln
:= inf

K⊆Rn
sup
H⊆Rn

Voln−1(K ∩ H).
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Introduction to Bourgain’s slicing problem

Main Result of Klartag and Lehec, 2022

Theorem 1 (Klartag and Lehec, 2022)

For any n ≥ 2,
Ln ≤ C (log n)4

for some universal constant C .

Previous results:

• Chen, 2021 showed Cεn
ε ≥ Ln for any ε > 0,

• Bourgain, 1991; Klartag, 2006 showed C ′n1/4 ≥ Ln.
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Introduction to Bourgain’s slicing problem

Intuition from Busemann-Petty problem

Busemann-Petty problem

Let K ,T be centrally symmetric convex bodies ⊆ Rn satisfying

∀θ ∈ Sn−1, Voln−1(K ∩ θ⊥) ≤ Voln−1(T ∩ θ⊥). (∗)

Is it true that Voln(K ) ≤ Voln(T )?

Answer: it depends!

n ≤ 4 → YES!

n ≥ 5 → NO!
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Introduction to Bourgain’s slicing problem

Counterexample for Busemann-Petty problem

n ≥ 10.

Let K =
[
−1

2 ,
1
2

]
, Voln(K ) = 1.

Let T = Euclidean ball of volume 9
10 centered at origin.

However,

Voln−1(K∩θ⊥) ≤
√
2 < 0.9

√
e ≈

(
0.9Γ

(
n
2 + 1

))(n−1)/n

Γ
(
n+1
2

) = Voln−1(T∩θ⊥)

K. Ball, 1988.
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Introduction to Bourgain’s slicing problem

Equivalent statement to Bourgain’s slicing problem

Modified Busemann-Petty problem

Let K ,T be centrally symmetric convex bodies ⊆ Rn satisfying (∗).
Is it true that Voln(K ) ≤ C Voln(T ) for some universal constant C > 0
independent of the dimension n?
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Preliminaries

Log-concave & isotropic measures

We call a Borel measure µ on Rn is log-concave if for any compact subsets
A,B ⊆∈ Rn and 0 < λ < 1, we have

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ.

Classical examples:

• uniform measure on any compact, convex set

• Gaussian measure

We say a probability measure µ on Rn with finite second moments is
isotropic if

∫

Rn

xi dµ(x) = 0 and

∫

Rn

xixj dµ(x) = δij for i , j = 1, . . . , n.
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Preliminaries

Thin-shell constant

The thin-shell constant σµ > 0 of an isotropic, log-concave probability
measure µ in Rn is given by

nσ2µ = Varµ
(
|x |2

)
.

Furthermore, we define the parameter

σn = sup
µ
σµ,

where the supremum runs over all isotropic, log-concave probability
measure in Rn. Eldan and Klartag showed that

Ln ≲ σn.

Anttila, Ball and Perissinaki 2003
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Preliminaries

Poincaré constant

The Poincaré constant CP(µ) of a Borel probability measure µ in Rn is the
smallest constant C ≥ 0 such that for any locally Lipschitz function
f ∈ L2(µ),

Varµ(f ) ≤ C

∫

Rn

|∇f |2 dµ.
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Preliminaries

Poincaré constant upper bound on thin-shell parameter

When µ is an isotropic, log-concave probability measure on Rn,

σ2n ≤ 4CP(µ).

Proof:

nσ2µ = Varµ
(
|x |2

)

≤ CP(µ)

∫

Rn

|2x |2 dµ(x) = 4n · CP(µ)

M. Gordin (Princeton University) Bourgain’s slicing problem November 1, 2023 11 / 19



Preliminaries
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Preliminaries

Cheeger constant

Given a probability measure µ in Rn with log-concave density ρ, its
Cheeger isoperimetric constant is

1

ψµ
:= inf

A⊆Rn

{ ∫
∂A ρ

min {µ(A), 1− µ(A)}

}

where the infimum runs over all open sets A ⊆ Rn with smooth boundary
for which 0 < µ(A) < 1. Let ψn := supµ ψµ.
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Preliminaries

Connection between Cheeger constant and Poincaré
constant

Cheeger’s inequality (1970)

1

CP(µ)
≥ 1

4ψ2
µ

.

Buser-Ledoux inequality (2004)

1

ψµ
≥ 1

3

√
1

CP(µ)

When µ is an absolutely-continuous, log-concave probability measure on
Rn, we conclude

1

4
≤

ψ2
µ

CP(µ)
≤ 9.

M. Gordin (Princeton University) Bourgain’s slicing problem November 1, 2023 13 / 19



Preliminaries

Connection between Cheeger constant and Poincaré
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Preliminaries

Creating a chain of constants

Summarizing the previous slides, we have that

Ln ≲ σn ≲
√

CP(µ) ≲ψn ≲ log n · σn,

where the supremum runs over all isotropic, log-concave probability
measure in Rn.

The last inequality is due to Eldan, 2013.

≲ ≲

√
≲ ≲ log n ·
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Related problems: KLS conjecture

Kannan-Lovász-Simonovits (KLS) conjecture

KLS conjecture

There is a universal constant C > 0 such that

ψn ≤ C .

Clearly, the KLS conjecture implies Bourgain’s slicing problem by the chain
of inequalities

Ln ≲ σn ≲ ψn.

≲ ≲
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Main result of Klartag and Lehec, 2022

Main result of Klartag and Lehec, 2022

Theorem 1.1 of Klartag and Lehec, 2022

For any n ≥ 2,
ψn ≤ C̃ (log n)5

for some universal constant C̃ .

Recall

Ln ≲ σn ≲ ψn ≲ log n · σn,

Proof ideas: µ isotropic, log-concave probability measure in Rn.

• perform spectral decomposition of the H−1(µ) norm to obtain
estimates on σµ.

• use heat flow argument with Eldan’s stochastic localization.
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Stochastic localization

Eldan’s stochastic localization
Idea: “tilt” our measure µ by some random hyperplane θ. Eldan, 2013

Let ρ denote the density of µ. Then let

pt,θ(x) :=
1

Z (t, θ)
e⟨θ,x⟩−t|x |2/2ρ(x).

The barycenter of pt,θ is given by

a(t, θ) =

∫

Rn

xpt,θ(x) dx .

Now we consider a stochastic process (θt)t≥0 that satisfies

θ0 = 0, dθt = dWt + a(t, θt)dt, (1)

where (Wt)t≥0 is a standard Brownian motion in Rn. By standard
arguments, a unique strong solution (θt)t≥0 to (1) exists.
Therefore, we can set:

pt(x) := pt,θt (x) at = a(t, θt).
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Stochastic localization

Stochastic localization continued

Now we obtain the equation for Eldan’s stochastic localization

p0(x) = ρ(x), dpt(x) = pt(x)⟨x − at , dWt⟩.

Corollary 2.5 of Klartag and Lehec, 2022

For t1 := (Cκ2n · log n)−1, we have for all t > 0,

E|at |2 ≤ C1n · t ·max

{
1,

t3

t31

}

for C ,C1 > 0 universal constants.
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