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Review of problem and important tools

Recall: Bourgain’s slicing problem

Bourgain’s slicing problem

Let K ⊆ Rn be a convex body of volume 1. Is there a hyperplane H ⊆ Rn

such that
Voln−1(K ∩ H) > c

for some universal constant c > 0?
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Review of problem and important tools Summary

Bourgain’s slicing problem

Conjecture: Ln ≤ C

1

Ln
:= inf

K⊆Rn
sup
H⊆Rn

Voln−1(K ∩ H)

Thin shell parameter σµ =

√
1

n
Varµ (|x |2)

Cheeger constant

KLS conjecture: ψn ≤ C

1

ψµ
:= inf

A⊆Rn

{ ∫
∂A ρ

min {µ(A), 1− µ(A)}

}

Ln ≲ σn ≲ ψn ≲ log n · σn

Theorem 1.1 of Klartag and Lehec, 2022

For any n ≥ 2 and for some universal constant C̃ ,

ψn ≤ C̃ (log n)5.
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Proof of Theorem 1.1

Structure of proof of Theorem 1.1

Proof setting: µ isotropic, log-concave probability measure in Rn.

WLOG we can assume:

i µ has a smooth positive density ρ,

ii σµ >
σn
2

(follows from i).

Proof ideas:

1 define a heat flow of log-concave measures,

2 obtain functional inequality to estimate σµ by upper bounding
spectral mass,

3 perform time renormalization to apply Eldan’s stochastic localization
and optimize over t to obtain final result.
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Proof of Theorem 1.1

Informal description of Markov semigroup (Pt)t≥0

For analysts:

(Pt)t≥0 is a collection of linear operators acting on a suitable function
space such that

• P0 = Id

• Pt(1) = 1

• If f ≥ 0, Pt f ≥ 0

• Pt ◦ Ps = Pt+s , t, s ≥ 0

For probabilists:

For a Markov process (Xt)t≥0 on a measurable state space E ,

Pt f (x) = E[f (Xt) | X0 = x ]

for f : E → R.

Bakry, Gentil, Ledoux, et al., 2014
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Proof of Theorem 1.1

Example: Classical heat semigroup on Rn

Let

γt(x) =
1

(4πt)n/2
e−|x |2/4t , t > 0, x ∈ Rn

denote the density of the family of Gaussian kernels, with the convention
that γ0 = δ0.

Then γt solves the heat equation

∂tpt = ∆pt .

For f : Rn → R, we may define

Pt f (x) =

∫ n

R
f (y)γt(x − y)dy .
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Proof of Theorem 1.1

Log-concave measures along the heat flow

Denote
µs := µ ∗ γs .

Notice that µ0 = µ.

Then we define the heat semigroup Pt f = f ∗ γs . The adjoint operator
Qs = P∗

s : L2(µ) → L2(µ) satisfies

Qsφ =
Ps(φρ)

Psρ
.

The Laplace operator associated with µ is the operator L := Lµ given by

Lu = ∆u +∇(log ρ) · ∇u

for a smooth function u : Rn → R.
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Proof of Theorem 1.1

Log-concave measures along the heat flow
By classical results L is esentially self-adjoint on L2(µ) and by the spectral
theorem, we may write

−L =

∫ ∞

−∞
λ dEλ

for (Eλ)λ∈R a certain increasing, right-continuous family of orthogonal
projections with

lim
λ→∞

Eλ = Id and lim
λ→−∞

Eλ = 0

Denote as νf the spectral measure satisfying

νf ((a, b]) = ⟨Ebf , f ⟩ − ⟨Eaf , f ⟩.
Recall the spectral gap of L is

λ1 =
1

CP(µ)
,

i.e. νf ([0, λ1)) = 0.
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Proof of Theorem 1.1

Proposition 2.1 of Klartag and Lehec, 2022

Let f ∈ L2(µ) satisfy
∫
Rn f dµ = 0 and ∥f ∥L2(µ) = 1. Then for s, λ > 0,

⟨Eλf , f ⟩L2(µ) ≤ C (∥Qs f ∥L2(µs) + sλ),

for C > 0 universal constant.
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Proof of Theorem 1.1 Stochastic localization

Brief overview of stochastic calculus

Brownian motion: the unique stochastic process (Wt)t≥0 satisfying

• W0 = 0, Wt ∼ N(0, t)

• independent and stationary increments Wt −Ws

• a.e. realization of t 7→ Wt is continuous.

Ito process:

Xt = X0 +

∫ t

0
σ(s,Xs)︸ ︷︷ ︸

noise

dWs +

∫ t

0
µ(s,Xs)︸ ︷︷ ︸

drift

ds.

We use the SDE notation

dXt = σ(s,Xs)︸ ︷︷ ︸
noise

dWs + µ(s,Xs)︸ ︷︷ ︸
drift

ds.
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Proof of Theorem 1.1 Stochastic localization

Brief overview of stochastic calculus

dXt = σ(s,Xs)︸ ︷︷ ︸
noise

dWs + µ(s,Xs)︸ ︷︷ ︸
drift

ds.

Ornstein-Uhlenbeck process

dXt = −Xt dt +
√
2 dWt

If X0 ∼ N(0, 1), then Xt ∼ N(0, 1).

M. Gordin (Princeton University) Bourgain’s slicing problem November 3, 2023 11 / 24



Proof of Theorem 1.1 Stochastic localization

Brief overview of stochastic calculus

dXt = σ(s,Xs)︸ ︷︷ ︸
noise

dWs + µ(s,Xs)︸ ︷︷ ︸
drift

ds.

Ornstein-Uhlenbeck process

dXt = −Xt dt +
√
2 dWt

If X0 ∼ N(0, 1), then Xt ∼ N(0, 1).

M. Gordin (Princeton University) Bourgain’s slicing problem November 3, 2023 11 / 24



Proof of Theorem 1.1 Stochastic localization

Brief overview of stochastic calculus

Ornstein-Uhlenbeck process

dXt = −Xt dt +
√
2 dWt

If X0 ∼ N(0, 1), then Xt ∼ N(0, 1).

M. Gordin (Princeton University) Bourgain’s slicing problem November 3, 2023 11 / 24



Proof of Theorem 1.1 Stochastic localization

Eldan’s stochastic localization
Idea: “tilt” our measure µ by some random hyperplane θ. Eldan, 2013

Let ρ denote the density of µ. Then let

pt,θ(x) :=
1

Z (t, θ)
e⟨θ,x⟩−t|x |2/2ρ(x).

The barycenter of pt,θ is given by

a(t, θ) =

∫

Rn

xpt,θ(x) dx .

Now we consider a stochastic process (θt)t≥0 that satisfies

θ0 = 0, dθt = dWt + a(t, θt)dt, (1)

where (Wt)t≥0 is a standard Brownian motion in Rn. By standard
arguments, a unique strong solution (θt)t≥0 to (1) exists.
Therefore, we can set:

pt(x) := pt,θt (x) at = a(t, θt).
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Proof of Theorem 1.1 Stochastic localization

Stochastic localization continued

Now we obtain the equation for Eldan’s stochastic localization

p0(x) = ρ(x), dpt(x) = pt(x)⟨x − at , dWt⟩.

Lemma 2.2.

Let φ ∈ L1(µ) and s > 0. Consider the stochastic process Mt =
∫
Rn φpt

defined for t ≥ 0. Then with t = 1/s,

E[M2
t ] = ∥Qs f ∥2L2(µs)

.
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Proof of Theorem 1.1 Stochastic localization

Proof of Lemma 2.2

Lemma 2.2.
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Proof of Theorem 1.1 Stochastic localization

Corollary 2.5 of Klartag and Lehec, 2022

For t1 := (Cκ2n · log n)−1, we have for all t > 0, for C ,C1 > 0 universal
constants,

E|at |2 ≤ C1n · t ·max

{
1,

t3

t31

}
.
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Proof of Theorem 1.1 Stochastic localization

H−1 norm

We recall that the norm of the Sobolev space H1(µ) is given by

∥f ∥2H1(µ) =

∫

Rn

|∇f |2 dµ

The dual norm for f ∈ L2(µ) with
∫
f dµ = 0 is given by

∥f ∥H−1(µ) = sup

{∫

Rn

fu dµ; u ∈ L2(µ) is locally Lipschitz with ∥u∥H1(µ) ≤ 1

}
.

We have the following spectral decomposition of the H−1 norm

∥f ∥H−1(µ) =

∫ ∞

λ1

dνf (λ)

λ
,

here νf is the spectral measure of f with respect to L.
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Proof of Theorem 1.1 Stochastic localization

Proof of Theorem 1.1

Recall: Proposition 2.1 of Klartag and Lehec, 2022

Let f ∈ L2(µ) satisfy
∫
Rn f dµ = 0 and ∥f ∥L2(µ) = 1. Then for s, λ > 0,

⟨Eλf , f ⟩L2(µ) ≤ C (∥Qs f ∥L2(µs) + sλ),

for C > 0 universal constant.

M. Gordin (Princeton University) Bourgain’s slicing problem November 3, 2023 20 / 24



Proof of Theorem 1.1 Stochastic localization

Proof of Theorem 1.1

Recall: Corollary 2.5 of Klartag and Lehec, 2022

For t1 := (Cκ2n · log n)−1, we have for all t > 0, for C ,C1 > 0 universal
constants,

E|at |2 ≤ C1n · t ·max

{
1,

t3

t31

}
.

M. Gordin (Princeton University) Bourgain’s slicing problem November 3, 2023 21 / 24



Proof of Theorem 1.1 Stochastic localization

Summary

• Ln ≲ σn ≲ ψn ≲
√
log nκn ≲ log n · σn

• construct a heat flow of measures that allows us to use a variety of
analytic and probabilistic techniques to obtain estimates

≲ ≲

√
≲ ≲ log n ·
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