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Review of problem and important tools

Recall: Bourgain's slicing problem

Bourgain's slicing problem

Let K C R" be a convex body of volume 1. Is there a hyperplane H C R”"
such that

Vol,_1(KNH) > c

for some universal constant ¢ > 07

N
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Review of problem and important tools

] - 1 .
Bourgain's slicing problem “y - — K'&E{n sup Vol,_1(K N H)
Conjecture: L, < C n CR" HCRn
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Review of problem and important tools

] - 1 .
Bourgain's slicing problem “y - — K'&E{n sup Vol,_1(K N H)
Conjecture: L, < C n CR" HCRn

1
Thin shell parameter ou =/ — Var, (|x]?)
n
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Review of problem and important tools

] - 1 .
Bourgain's slicing problem “y - — Klgﬂ];n sup Vol,_1(K N H)
Conjecture: L, < C n CR" HCRn

1
Thin shell parameter @ o=/ Var,, (]x[2)
1 Joar
Cheeger constant (X) — = inf 9A
: U ACR { min {u(A), 1 — p(A)}

KLS conjecture: 1, < C "

M. Gordin (Princeton University) Bourgain'’s slicing problem



Review of problem and important tools

. v . . 1 .
Bourgain's slicing problem “y - — Klgﬂ];n sup Vol,_1(K N H)
Conjecture: L, < C n CR" HCRn

1
Thin shell parameter @ ou =/ — Var, (|x]?)
n

1 Joar
Cheeger constant — = inf { . 9A }
KLS conjecture: 1, < C Yu  ACkr | min{u(A),1— p(A)}

Ln SonStn Slogn-o,
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Review of problem and important tools

Bourgain's slicing problem
Conjecture: L, < C

Thin shell parameter

Cheeger constant
KLS conjecture: ¥, < C

27

O

L = K'E]%n :gﬂgnVoln_l(Kﬂ H)

1
O = n Vary, (|x[?)

_ Joar }

Oy = A { min {1(A), 1 — u(A)}

Ln SonStn Slogn-o,

Theorem 1.1 of Klartag and Lehec, 2022

For any n > 2 and for some universal constant C,

M. Gordin (Princeton University)

Vn < C(log n)°.
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Proof of Theorem 1.1

Structure of proof of Theorem 1.1

Proof setting: u isotropic, log-concave probability measure in R”.

WLOG we can assume:

@ 1 has a smooth positive density p,

® o, > % (follows from i).

M. Gordin (Princeton University) Bourgain's slicing problem



Proof of Theorem 1.1

Structure of proof of Theorem 1.1

Proof setting: u isotropic, log-concave probability measure in R”.

WLOG we can assume:

® 1 has a smooth positive density p,

® o, > % (follows from i).

Proof ideas:
@ define a heat flow of log-concave measures,

@® obtain functional inequality to estimate o, by upper bounding
spectral mass,

© perform time renormalization to apply Eldan’s stochastic localization
and optimize over t to obtain final result.
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Informal description of Markov semigroup (P;)¢>0

For analysts:

(Pt)>0 is a collection of linear operators acting on a suitable function
space such that

e Py=Id e Iff>0, Psf >0
.Pt(]]_):]]_ .PtOPSZPt+5,t,SZO

For probabilists:

For a Markov process (X:)t>0 on a measurable state space E,
P:f(x) = E[f(X:) | Xo = x]
for f : E — R.
Bakry, Gentil, Ledoux, et al., 2014
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Proof of Theorem 1.1

Example: Classical heat semigroup on R”

Let
L xpae

yt(x):we 5 t>O,X€Rn

denote the density of the family of Gaussian kernels, with the convention
that 9 = Jo.
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Proof of Theorem 1.1

Example: Classical heat semigroup on R”

Let
L xpae

yt(x):we 5 t>O,X€Rn

denote the density of the family of Gaussian kernels, with the convention
that 79 = dp. Then ~; solves the heat equation

O0tpr = Ap;.
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Example: Classical heat semigroup on R”

Let

1 k]2
’)/t(X) = We I /4t, t> O,X e R"

denote the density of the family of Gaussian kernels, with the convention
that 79 = dp. Then ~; solves the heat equation

O0tpr = Ap;.

For f : R" — R, we may define

P:f(x) = /R“ f(y)ve(x — y)dy.

M. Gordin (Princeton University) Bourgain'’s slicing problem



Proof of Theorem 1.1

Log-concave measures along the heat flow
Denote

Hs = [ *Ys.
Notice that g = p.
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Proof of Theorem 1.1

Log-concave measures along the heat flow

Denote
Hs = K *Ys.
Notice that g = p.

Then we define the heat semigroup P:f = f % 5. The adjoint operator
Qs = PZ: L?(n) — L2(u) satisfies
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Proof of Theorem 1.1

Log-concave measures along the heat flow

Denote
Ms = [ *Ys.
Notice that g = p.

Then we define the heat semigroup P:f = f % 5. The adjoint operator
Qs = PZ: L?(n) — L2(u) satisfies

I )

Psp

The Laplace operator associated with p is the operator L := L, given by

Lu= Au+ V(logp)-Vu

for a smooth function v : R" — R.
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Proof of Theorem 1.1

Log-concave measures along the heat flow
By classical results £ is esentially self-adjoint on L2(z) and by the spectral

theorem, we may write
o0
—L :/ AdE)
—00

for (Ex)xer a certain increasing, right-continuous family of orthogonal
projections with

lim Ey=1d and lim E, =0
A—00 A——00
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Proof of Theorem 1.1

Log-concave measures along the heat flow
By classical results £ is esentially self-adjoint on L2(z) and by the spectral

theorem, we may write
o0
—L :/ A dEy
—00

for (Ex)xer a certain increasing, right-continuous family of orthogonal
projections with

lim Ey=1d and lim E, =0
A—00 A——00
Denote as vr the spectral measure satisfying

Vf((a7 b]) = <Ebf7 f> - <Eaf7 f>
Recall the spectral gap of L is

i.e. l/f([O, )\1)) =0.
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Proof of Theorem 1.1

_ Proofof Theorem 11 |
Proposition 2.1 of Klartag and Lehec, 2022

Let f € L?(p) satisfy [p, f du =0 and [fll2(sy = 1. Then for s, A >0,

(Exfs F)ioguy < ClIQslli2us) + 52,

for C > 0 universal constant.
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Proof of Theorem 1.1

Brief overview of stochastic calculus

Brownian motion: the unique stochastic process (W;)¢>q satisfying
e Wo =0, W~ N(0,t)
® independent and stationary increments W, — W

® a.e. realization of t — W, is continuous.
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Proof of Theorem 1.1

Brief overview of stochastic calculus

Brownian motion: the unique stochastic process (W;)¢>q satisfying
e Wo =0, W~ N(0,t)
® independent and stationary increments W, — W
® a.e. realization of t — W, is continuous.

Ito process:

t t
Xe = Xo + / o(s, Xs) dWs + / (s, Xs) ds.

noise drift
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Brief overview of stochastic calculus

Brownian motion: the unique stochastic process (W;)¢>q satisfying
e Wo =0, W~ N(0,t)
® independent and stationary increments W, — W
® a.e. realization of t — W, is continuous.

Ito process:

t t
Xe = Xo + / o(s, Xs) dWs + / (s, Xs) ds.

noise drift

We use the SDE notation

dX; = o(s, Xs) dWs + (s, X.) ds.
—— ——

noise drift
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Proof of Theorem 1.1

Brief overview of stochastic calculus

dXe = o(s, Xs) dWs + (s, Xs) ds.
—— ——

noise drift
3 o A
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Proof of Theorem 1.1

Brief overview of stochastic calculus

dXe = o(s, Xs) dWs + (s, Xs) ds.
—— ——

noise drift

Ornstein-Uhlenbeck process

dX; = —X; dt + V2 dW,

If Xo ~ N(0,1), then X; ~ N(0,1).
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Proof of Theorem 1.1

Brief overview of stochastic calculus

Ornstein-Uhlenbeck process

dX; = — X, dt + V2 dW,

If Xo ~ N(0,1), then X; ~ N(0,1).

4

— Xi—-BM

stoch. process

—— U; — OU process
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Proof of Theorem 1.1

Eldan’s stochastic localization
Idea: "tilt" our measure pu by some random hyperplane 6. Eldan, 2013

Let p denote the density of ;1. Then let

1 O tlx?
— {0 txIT/2 5x).

pt,@(x) = Z(t, 9)

M. Gordin (Princeton University) Bourgain'’s slicing problem



Proof of Theorem 1.1

Eldan’s stochastic localization

Idea: "tilt" our measure u by some random hyperplane 6
Let p denote the density of ;1. Then let

1
Z(t,0)
The barycenter of p; g is given by

a(t,0) = /]R" xpe g(x) dx.

Eldan, 2013

Peo(x) = g0 =t /2 (x).
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Proof of Theorem 1.1

Eldan’s stochastic localization

Idea: "tilt" our measure u by some random hyperplane 6. Eldan, 2013
Let p denote the density of p. Then let
1 lxl2
prao(x) = el )=t/ (),

Z(t,0)
The barycenter of p; g is given by
a(t,0) :/ xpe.p(x) dx.
]Rn
Now we consider a stochastic process (6;)¢>0 that satisfies

90 == 0, dgt = th + a(t, Qt)dt, (1)

where (W;)¢>0 is a standard Brownian motion in R".
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Proof of Theorem 1.1

Eldan’s stochastic localization

Idea: "tilt" our measure u by some random hyperplane 6. Eldan, 2013
Let p denote the density of p. Then let
1

X)— X2

The barycenter of p; g is given by
a(t,0) :/ xpe.p(x) dx.
]Rn
Now we consider a stochastic process (6;)¢>0 that satisfies

90 == 0, dgt = th + a(t, 91—)dt7 (1)

where (W;)¢>0 is a standard Brownian motion in R". By standard
arguments, a unique strong solution (6¢);>0 to (1) exists.
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Proof of Theorem 1.1

Eldan’s stochastic localization
Idea: "tilt" our measure u by some random hyperplane 6. Eldan, 2013

Let p denote the density of p. Then let
1
Pl Ze.0)

The barycenter of p; g is given by
a(t,0) :/ xpe.p(x) dx.
]Rn

Now we consider a stochastic process (6;)¢>0 that satisfies

90 == 0, dgt = th + 3(t7 Qt)dt, (1)

X)— X2
{0 =txI%/2 55y,

where (W;)¢>0 is a standard Brownian motion in R". By standard
arguments, a unique strong solution (6¢);>0 to (1) exists.
Therefore, we can set:

pe(x) == pro(x) ar = a(t,0;).



Proof of Theorem 1.1

Stochastic localization continued

Now we obtain the equation for Eldan’s stochastic localization

po(x) = p(x),  dpe(x) = pe(x)(x — a¢, dW).
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Proof of Theorem 1.1

Stochastic localization continued

Now we obtain the equation for Eldan’s stochastic localization

po(x) = p(x),  dpe(x) = pe(x)(x — a¢, dW).

Let ¢ € L}(p) and s > 0. Consider the stochastic process M; = Jgn 0Pt
defined for t > 0. Then with t =1/s,

E[MZ] = [|Qsf 1 72(,.)-
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Proof of Theorem 1.1

Proof of Lemma 2.2

Let ¢ € L}(p) and s > 0. Consider the stochastic process M; = Jgn 0Pt
defined for t > 0. Then with t =1/s,

E[MZ] = [ QsfI72(,)-
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Proof of Theorem 1.1

______ ProofofTheoemil
Corollary 2.5 of Klartag and Lehec, 2022

For t; := (Ck2 - log n)~!, we have for all t >0, for C, C; > 0 universal
constants,

t3
Ela:> < Cin - t- max{l, F} .
1
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Proof of Theorem 1.1

H~! norm

We recall that the norm of the Sobolev space H(y) is given by
Iy = [ IVFP dn
Rn
The dual norm for f € L?(u) with [ fdu =0 is given by
1l 1) = sup {/ fudp; u € L2(u) is locally Lipschitz with ull gy <1
Rn

We have the following spectral decomposition of the H~! norm

 dvr(N)
f -1 _/ 9
Il = [ %5

here vr is the spectral measure of f with respect to L.
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Proof of Theorem 1.1

Proof of Theorem 1.1

Recall: Proposition 2.1 of Klartag and Lehec, 2022

Let f € L?(p) satisfy [p, f du =0 and [fll2(sy = 1. Then for s,A >0,

(Exf, F)izguy < CU1Qsf | 2uy) + 5M),

for C > 0 universal constant.
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Proof of Theorem 1.1

Proof of Theorem 1.1

Recall: Corollary 2.5 of Klartag and Lehec, 2022

For t; := (Ck2 - log n)~1, we have for all t > 0, for C, C; > 0 universal
constants,

t3
]E‘at|2 S C1n -t max{l, F} .
1

M. Gordin (Princeton University) Bourgain's slicing problem



Proof of Theorem 1.1

Summary

® Ly SonSn S Vlognk, Slogn-op

® construct a heat flow of measures that allows us to use a variety of
analytic and probabilistic techniques to obtain estimates

©-0O-8:c0--0
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