Talk 2: Bourgain's slicing problem and KLS isoperimetry up to polylog

Mira Gordin

Princeton University

November 3, 2023

after Klartag and Lehec, [2022](#page-38-0)

Recall: Bourgain's slicing problem

Bourgain's slicing problem

Let $K \subseteq \mathbb{R}^n$ be a convex body of volume 1. Is there a hyperplane $H \subseteq \mathbb{R}^n$ such that

$$
\mathsf{Vol}_{n-1}(K\cap H)>c
$$

for some universal constant $c > 0$?

$$
Z \quad \frac{1}{L_n} := \inf_{K \subseteq \mathbb{R}^n} \sup_{H \subseteq \mathbb{R}^n} \text{Vol}_{n-1}(K \cap H)
$$

M. Gordin (Princeton University) [Bourgain's slicing problem](#page-0-0) November 3, 2023 $3/24$

$$
\frac{1}{L_n} := \inf_{K \subseteq \mathbb{R}^n} \sup_{H \subseteq \mathbb{R}^n} \text{Vol}_{n-1}(K \cap H)
$$

Thin shell parameter

$$
\widehat{\sigma}_{\mu} = \sqrt{\frac{1}{n} \text{Var}_{\mu}(|x|^2)}
$$

Thin shell parameter

$$
\bigoplus
$$

 $\overline{1}$

$$
\frac{1}{L_n} := \inf_{K \subseteq \mathbb{R}^n} \sup_{H \subseteq \mathbb{R}^n} \text{Vol}_{n-1}(K \cap H)
$$

$$
\bigg\}\hspace{.2in} \sigma_\mu = \sqrt{\frac{1}{n}\mathsf{Var}_\mu\left(|x|^2\right)}
$$

Cheeger constant KLS conjecture: $\psi_n \leq C$

$$
\bigcirc \hspace{-7mm} \bigcirc \hspace{-7mm} \bigcirc \frac{1}{\psi_{\mu}} := \inf_{A \subseteq \mathbb{R}^n} \left\{ \frac{\int_{\partial A} \rho}{\min \left\{ \mu(A), 1 - \mu(A) \right\}} \right\}
$$

Thin shell parameter

$$
\frac{1}{L_n} := \inf_{K \subseteq \mathbb{R}^n} \sup_{H \subseteq \mathbb{R}^n} \text{Vol}_{n-1}(K \cap H)
$$

$$
\bigg\}\hspace{.2in} \sigma_\mu = \sqrt{\frac{1}{n}\text{Var}_\mu\left(|x|^2\right)}
$$

Cheeger constant KLS conjecture: $\psi_n \leq C$

$$
\text{min } \quad \frac{1}{\psi_\mu} := \inf_{A \subseteq \mathbb{R}^n} \left\{ \frac{\int_{\partial A} \rho}{\min \left\{ \mu(A), 1 - \mu(A) \right\}} \right\}
$$

 $L_n \lesssim \sigma_n \lesssim \psi_n \lesssim \log n \cdot \sigma_n$

Bourgain's slicing problem Conjecture: $L_n < C$ 1 $\frac{1}{L_n} := \inf_{K \subseteq \mathbb{R}^n} \sup_{H \subseteq \mathbb{R}^n} \text{Vol}_{n-1}(K \cap H)$ Thin shell parameter $\sqrt{1}$ $\frac{1}{n}$ Var $_{\mu}$ (|x|²) Cheeger constant KLS conjecture: $\psi_n \leq C$ 1 $\frac{1}{\psi_{\mu}} := \inf_{A \subseteq \mathbb{R}^n}$ $\int \frac{f_{\partial A} \rho}{\rho}$ min $\{\mu(A), 1 - \mu(A)\}$ \mathcal{L}

 $L_n \leq \sigma_n \leq \psi_n \leq \log n \cdot \sigma_n$

Theorem 1.1 of Klartag and Lehec, [2022](#page-38-0)

For any $n > 2$ and for some universal constant \tilde{C} ,

$$
\psi_n\leq \tilde{C}(\log n)^5.
$$

Structure of proof of Theorem 1.1

Proof setting: μ isotropic, log-concave probability measure in \mathbb{R}^n .

WLOG we can assume:

 \bullet μ has a smooth positive density ρ ,

$$
\bullet \quad \sigma_{\mu} > \frac{\sigma_n}{2} \text{ (follows from i).}
$$

Structure of proof of Theorem 1.1

Proof setting: μ isotropic, log-concave probability measure in \mathbb{R}^n .

WLOG we can assume:

 \bullet μ has a smooth positive density ρ ,

$$
\bullet \ \sigma_{\mu} > \frac{\sigma_n}{2} \text{ (follows from i).}
$$

Proof ideas:

- **1** define a heat flow of log-concave measures,
- \bullet obtain functional inequality to estimate σ_{μ} by upper bounding spectral mass,
- 3 perform time renormalization to apply Eldan's stochastic localization and optimize over t to obtain final result.

Informal description of Markov semigroup $(P_t)_{t\geq0}$

For analysts:

 $(P_t)_{t\geq0}$ is a collection of linear operators acting on a suitable function space such that

- $P_0 = Id$ • $P_t(1) = 1$ • If $f > 0$, $P_t f > 0$
	- $P_t \circ P_s = P_{t+s}, t, s \geq 0$

For probabilists:

For a Markov process $(X_t)_{t\geq 0}$ on a measurable state space E,

$$
P_t f(x) = \mathbb{E}[f(X_t) | X_0 = x]
$$

for $f : E \to \mathbb{R}$.

Bakry, Gentil, Ledoux, et al., [2014](#page-38-2)

Example: Classical heat semigroup on \mathbb{R}^n

Let

$$
\gamma_t(x) = \frac{1}{(4\pi t)^{n/2}} e^{-|x|^2/4t}, \quad t > 0, x \in \mathbb{R}^n
$$

denote the density of the family of Gaussian kernels, with the convention that $\gamma_0 = \delta_0$.

Example: Classical heat semigroup on \mathbb{R}^n

Let

$$
\gamma_t(x) = \frac{1}{(4\pi t)^{n/2}} e^{-|x|^2/4t}, \quad t > 0, x \in \mathbb{R}^n
$$

denote the density of the family of Gaussian kernels, with the convention that $\gamma_0 = \delta_0$. Then γ_t solves the heat equation

$$
\partial_t p_t = \Delta p_t.
$$

Example: Classical heat semigroup on \mathbb{R}^n

Let

$$
\gamma_t(x) = \frac{1}{(4\pi t)^{n/2}} e^{-|x|^2/4t}, \quad t > 0, x \in \mathbb{R}^n
$$

denote the density of the family of Gaussian kernels, with the convention that $\gamma_0 = \delta_0$. Then γ_t solves the heat equation

$$
\partial_t p_t = \Delta p_t.
$$

For $f : \mathbb{R}^n \to \mathbb{R}$, we may define

$$
P_t f(x) = \int_{\mathbb{R}}^n f(y) \gamma_t(x-y) dy.
$$

Denote

$$
\mu_{\mathbf{s}} := \mu * \gamma_{\mathbf{s}}.
$$

Notice that $\mu_0 = \mu$.

Denote

$$
\mu_{s}:=\mu*\gamma_{s}.
$$

Notice that $\mu_0 = \mu$.

Then we define the heat semigroup $P_t f = f * \gamma_s$. The adjoint operator $Q_{\pmb{s}} = P_{\pmb{s}}^*: L^2(\mu) \to L^2(\mu)$ satisfies

$$
Q_s \varphi = \frac{P_s(\varphi \rho)}{P_s \rho}.
$$

Denote

$$
\mu_{s}:=\mu*\gamma_{s}.
$$

Notice that $\mu_0 = \mu$.

Then we define the heat semigroup $P_t f = f * \gamma_s$. The adjoint operator $Q_{\pmb{s}} = P_{\pmb{s}}^*: L^2(\mu) \to L^2(\mu)$ satisfies

$$
Q_s \varphi = \frac{P_s(\varphi \rho)}{P_s \rho}.
$$

The Laplace operator associated with μ is the operator $L := L_{\mu}$ given by

$$
Lu = \Delta u + \nabla(\log \rho) \cdot \nabla u
$$

for a smooth function $u:\mathbb{R}^n\to\mathbb{R}$.

By classical results $\mathcal L$ is esentially self-adjoint on $L^2(\mu)$ and by the spectral theorem, we may write

$$
-L=\int_{-\infty}^{\infty}\lambda\,dE_{\lambda}
$$

for $(E_{\lambda})_{\lambda \in \mathbb{R}}$ a certain increasing, right-continuous family of orthogonal projections with

$$
\lim_{\lambda \to \infty} E_{\lambda} = \text{Id} \quad \text{and} \quad \lim_{\lambda \to -\infty} E_{\lambda} = 0
$$

By classical results $\mathcal L$ is esentially self-adjoint on $L^2(\mu)$ and by the spectral theorem, we may write

$$
-L=\int_{-\infty}^{\infty}\lambda\,dE_{\lambda}
$$

for $(E_{\lambda})_{\lambda \in \mathbb{R}}$ a certain increasing, right-continuous family of orthogonal projections with

$$
\lim_{\lambda \to \infty} E_{\lambda} = \text{Id} \quad \text{and} \quad \lim_{\lambda \to -\infty} E_{\lambda} = 0
$$

Denote as ν_f the spectral measure satisfying

$$
\nu_f((a,b])=\langle E_bf,f\rangle-\langle E_af,f\rangle.
$$

Recall the spectral gap of L is

$$
\lambda_1=\frac{1}{\mathsf{C}_{\mathsf{P}}(\mu)},
$$

i.e.
$$
\nu_f([0,\lambda_1))=0
$$
.

M. Gordin (Princeton University) [Bourgain's slicing problem](#page-0-0) November 3, 2023 8/24

Proposition 2.1 of Klartag and Lehec, [2022](#page-38-0)

Let $f\in L^2(\mu)$ satisfy $\int_{\mathbb{R}^n}f\ d\mu=0$ and $\|f\|_{L^2(\mu)}=1.$ Then for $s,\lambda>0,$

$$
\langle E_{\lambda}f, f \rangle_{L^2(\mu)} \leq C(||Q_s f||_{L^2(\mu_s)} + s\lambda),
$$

for $C > 0$ universal constant.

Brownian motion: the unique stochastic process $(W_t)_{t>0}$ satisfying

- $W_0 = 0$, $W_t \sim N(0, t)$
- independent and stationary increments $W_t W_s$
- a.e. realization of $t \mapsto W_t$ is continuous.

Brownian motion: the unique stochastic process $(W_t)_{t\geq0}$ satisfying

- $W_0 = 0$, $W_t \sim N(0, t)$
- independent and stationary increments $W_t W_s$
- a.e. realization of $t \mapsto W_t$ is continuous.

Ito process:

$$
X_t = X_0 + \int_0^t \underbrace{\sigma(s, X_s)}_{\text{noise}} dW_s + \int_0^t \underbrace{\mu(s, X_s)}_{\text{drift}} ds.
$$

Brownian motion: the unique stochastic process $(W_t)_{t>0}$ satisfying

- $W_0 = 0$, $W_t \sim N(0, t)$
- independent and stationary increments $W_t W_s$
- a.e. realization of $t \mapsto W_t$ is continuous.

Ito process:

$$
X_t = X_0 + \int_0^t \underbrace{\sigma(s, X_s)}_{\text{noise}} dW_s + \int_0^t \underbrace{\mu(s, X_s)}_{\text{drift}} ds.
$$

We use the SDE notation

$$
dX_t = \underbrace{\sigma(s, X_s)}_{\text{noise}} dW_s + \underbrace{\mu(s, X_s)}_{\text{drift}} ds.
$$

$$
dX_t = \underbrace{\sigma(s, X_s)}_{\text{noise}} dW_s + \underbrace{\mu(s, X_s)}_{\text{drift}} ds.
$$

Ornstein-Uhlenbeck process

$$
dX_t = -X_t dt + \sqrt{2} dW_t
$$

If $X_0 \sim N(0, 1)$, then $X_t \sim N(0, 1)$.

Ornstein-Uhlenbeck process

$$
dX_t = -X_t dt + \sqrt{2} dW_t
$$

If $X_0 \sim N(0, 1)$, then $X_t \sim N(0, 1)$.

Idea: "tilt" our measure μ by some random hyperplane θ . Eldan, [2013](#page-38-3) Let ρ denote the density of μ . Then let

$$
p_{t,\theta}(x):=\frac{1}{Z(t,\theta)}e^{\langle\theta,x\rangle-t|x|^2/2}\rho(x).
$$

Idea: "tilt" our measure μ by some *random* hyperplane θ . Eldan, [2013](#page-38-3) Let ρ denote the density of μ . Then let

$$
p_{t,\theta}(x):=\frac{1}{Z(t,\theta)}e^{\langle\theta,x\rangle-t|x|^2/2}\rho(x).
$$

The barycenter of $p_{t,\theta}$ is given by

$$
a(t,\theta)=\int_{\mathbb{R}^n} x p_{t,\theta}(x) dx.
$$

Idea: "tilt" our measure μ by some *random* hyperplane θ . Eldan, [2013](#page-38-3) Let ρ denote the density of μ . Then let

$$
p_{t,\theta}(x):=\frac{1}{Z(t,\theta)}e^{\langle \theta,x\rangle-t|x|^2/2}\rho(x).
$$

The barycenter of $p_{t,\theta}$ is given by

$$
a(t,\theta)=\int_{\mathbb{R}^n} x p_{t,\theta}(x) dx.
$$

Now we consider a stochastic process $(\theta_t)_{t\geq0}$ that satisfies

$$
\theta_0 = 0, \quad d\theta_t = dW_t + a(t, \theta_t)dt, \tag{1}
$$

where $(W_t)_{t\geq 0}$ is a standard Brownian motion in \mathbb{R}^n .

Idea: "tilt" our measure μ by some *random* hyperplane θ . Eldan, [2013](#page-38-3) Let ρ denote the density of μ . Then let

$$
p_{t,\theta}(x):=\frac{1}{Z(t,\theta)}e^{\langle \theta,x\rangle-t|x|^2/2}\rho(x).
$$

The barycenter of $p_{t,\theta}$ is given by

$$
a(t,\theta)=\int_{\mathbb{R}^n} x p_{t,\theta}(x) dx.
$$

Now we consider a stochastic process $(\theta_t)_{t\geq0}$ that satisfies

$$
\theta_0 = 0, \quad d\theta_t = dW_t + a(t, \theta_t)dt, \tag{1}
$$

where $(W_t)_{t\geq 0}$ is a standard Brownian motion in \mathbb{R}^n . By standard arguments, a unique strong solution $(\theta_t)_{t>0}$ to [\(1\)](#page-25-0) exists.

M. Gordin (Princeton University) [Bourgain's slicing problem](#page-0-0) November 3, 2023 12 / 24

Idea: "tilt" our measure μ by some random hyperplane θ . Eldan, [2013](#page-38-3) Let ρ denote the density of μ . Then let

$$
p_{t,\theta}(x):=\frac{1}{Z(t,\theta)}e^{\langle \theta,x\rangle-t|x|^2/2}\rho(x).
$$

The barycenter of $p_{t,\theta}$ is given by

$$
a(t,\theta)=\int_{\mathbb{R}^n} x p_{t,\theta}(x) dx.
$$

Now we consider a stochastic process $(\theta_t)_{t\geq0}$ that satisfies

$$
\theta_0 = 0, \quad d\theta_t = dW_t + a(t, \theta_t)dt, \tag{1}
$$

where $(W_t)_{t\geq 0}$ is a standard Brownian motion in \mathbb{R}^n . By standard arguments, a unique strong solution $(\theta_t)_{t>0}$ to [\(1\)](#page-25-0) exists. Therefore, we can set:

$$
p_t(x) := p_{t,\theta_t}(x) \quad a_t = a(t,\theta_t).
$$

Stochastic localization continued

Now we obtain the equation for Eldan's stochastic localization

$$
p_0(x) = \rho(x), \quad dp_t(x) = p_t(x)\langle x - a_t, dW_t \rangle.
$$

Stochastic localization continued

Now we obtain the equation for Eldan's stochastic localization

$$
p_0(x) = \rho(x), \quad dp_t(x) = p_t(x)\langle x - a_t, dW_t \rangle.
$$

Lemma 2.2.

Let $\varphi \in L^1(\mu)$ and $s > 0$. Consider the stochastic process $M_t = \int_{\mathbb{R}^n} \varphi \rho_t$ defined for $t \geq 0$. Then with $t = 1/s$,

$$
\mathbb{E}[M_t^2] = \|Q_s f\|_{L^2(\mu_s)}^2.
$$

Proof of Lemma 2.2

Lemma 2.2.

Let $\varphi \in L^1(\mu)$ and $s > 0$. Consider the stochastic process $M_t = \int_{\mathbb{R}^n} \varphi \rho_t$ defined for $t \geq 0$. Then with $t = 1/s$,

$$
\mathbb{E}[M_t^2] = \|Q_{\mathsf{s}}f\|_{L^2(\mu_{\mathsf{s}})}^2.
$$

Corollary 2.5 of Klartag and Lehec, [2022](#page-38-0)

For $t_1 := (C\kappa_n^2 \cdot \log n)^{-1}$, we have for all $t > 0$, for $C, C_1 > 0$ universal constants,

$$
\mathbb{E}|a_t|^2 \leq C_1 n \cdot t \cdot \max\left\{1, \frac{t^3}{t_1^3}\right\}.
$$

H^{-1} norm

We recall that the norm of the Sobolev space $H^1(\mu)$ is given by

$$
||f||_{H^1(\mu)}^2 = \int_{\mathbb{R}^n} |\nabla f|^2 d\mu
$$

The dual norm for $f \in L^2(\mu)$ with $\int f d\mu = 0$ is given by

$$
\|f\|_{H^{-1}(\mu)} = \sup \left\{ \int_{\mathbb{R}^n} fu \, d\mu; u \in L^2(\mu) \text{ is locally Lipschitz with } \|u\|_{H^1(\mu)} \le 1 \right\}
$$

We have the following spectral decomposition of the H^{-1} norm

$$
||f||_{H^{-1}(\mu)} = \int_{\lambda_1}^{\infty} \frac{d\nu_f(\lambda)}{\lambda},
$$

here ν_f is the spectral measure of f with respect to $L.$

Proof of Theorem 1.1

Recall: Proposition 2.1 of Klartag and Lehec, [2022](#page-38-0)

Let $f\in L^2(\mu)$ satisfy $\int_{\mathbb{R}^n}f\ d\mu=0$ and $\|f\|_{L^2(\mu)}=1.$ Then for $s,\lambda>0,$

$$
\langle E_{\lambda}f, f \rangle_{L^2(\mu)} \leq C(||Q_sf||_{L^2(\mu_s)} + s\lambda),
$$

for $C > 0$ universal constant.

Proof of Theorem 1.1

Recall: Corollary 2.5 of Klartag and Lehec, [2022](#page-38-0)

For $t_1 := (C\kappa_n^2 \cdot \log n)^{-1}$, we have for all $t > 0$, for $C, C_1 > 0$ universal constants,

$$
\mathbb{E}|a_t|^2 \leq C_1 n \cdot t \cdot \max\left\{1, \frac{t^3}{t_1^3}\right\}.
$$

Summary

- $L_n \lesssim \sigma_n \lesssim \psi_n \lesssim \sqrt{\log n} \kappa_n \lesssim \log n \cdot \sigma_n$
- construct a heat flow of measures that allows us to use a variety of analytic and probabilistic techniques to obtain estimates

$$
\mathbb{Q} \times \mathbb{Q} \times \sqrt{\frac{2}{\gamma^2}} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}
$$

References

- Bakry, D., Gentil, I., Ledoux, M., et al. (2014). Analysis and geometry of markov diffusion operators (Vol. 103). Springer.
- Eldan, R. (2013).Thin shell implies spectral gap up to polylog via a stochastic localization scheme. Geometric and Functional Analysis, 23(2), 532–569.
- Klartag, B., & Lehec, J. (2022).Bourgain's slicing problem and KLS isoperimetry up to polylog. Geometric and Functional Analysis, 32(5), 1134–1159.
- Klartag, B., & Putterman, E. (2021).Spectral monotonicity under gaussian convolution. arXiv preprint arXiv:2107.09496.
- Ledoux, M. (2004).Spectral gap, logarithmic sobolev constant, and geometric bounds. Surveys in differential geometry, 9(1), 219–240.